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Abstract

The traditional manual observation of marine organisms suffers from shortcomings such as low effi-
ciency, high risk, and environmental disruption, making it difficult to achieve long-term continuous
monitoring. To address this issue, this study designs an intelligent fish recognition and monitoring
system based on the improved YOLOv8n. Through dynamic weighted data augmentation, attention
mechanism optimization, and the construction of an adaptive loss function system, the robustness and
recognition accuracy of the model in complex underwater environments are significantly enhanced.
The system integrates algorithm models, PyQt5 upper computer software, and edge deployment ad-
aptation, innovatively solving engineering challenges including multi-thread task conflicts, Chinese
label display distortion, and real-time conversion of multi-source data. Experimental results show
that the system achieves a mean Average Precision (mAP@0.5) of 94% and an F1 score of 0.904 on a
dataset containing 13 fish species, supporting millisecond-level recognition response and Chinese vis-
ualization output. This system provides an efficient and reliable technical solution for marine biodi-
versity monitoring, intelligent scientific expeditions, and species early warning, and holds significant
scientific research and application value.
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Figure 1. Target recognition results
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Table 1. Comprehensive performance comparison of multiple models

=1 SMREPMZAMREX LR

T A2 F mAP@0.5 mAP@0.5:0.95 P (%) R (%) F1 FLOPs (G) FPS
YOLOV8n 76.8 52.3 81.2 72.4 0.766 8.0 120
YOLOV9 80.1 56.7 84.5 75.8 0.800 12.4 95
YOLOV10 815 59.2 85.7 77.3 0.814 11.2 105
i YOLOv8n 86.0 65.7 89.1 85.2 0.871 7.1 145
SSD 68.5 45.1 73.3 63.8 0.683 31.2 75
RetinaNet 72.7 495 774 67.9 0.725 432 65
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B S 47.6 325 578 472 0524
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D Y y 68.3 52.7 785 679  0.732
E V 66.7 50.9 768 662 0715
F V \ 70.1 54.5 803 697  0.751
G \ \ \ 94.0 78.6 950 920  0.904
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Figure 2. Visualization interface of fish recognition and detection system
2. BARFNREHATRLAE

FRGR M PyQUs HERBLTF ELAUACLS (¥ GUI i, fnla] 2 s, Bt it IX . SHEX. K
MEERERX . GRS PR IX KRB E X TR DD BRI Bl XS BRI RN BBk sk
IR S A RE B AL, SCRF 2 I R MR N3 SO E X SR B8 LEEREBIE . ZSIF R
i BEEoRR R A IS HL, WA RS SRR TR A 45 R 7R X SR JE e H AR A AR ,
[ R BRRe). BEAGRE . ARRRAr B A AE 5515 2 45 R FIR XL 7 5L BT SR B A2
FARSCH S i, SORFa RIRIE A B 038 0 B X IR L S i 8 2 MO WAL B Th g, AT RIS I E

DOI: 10.12677/csa.2026.162048 166 HEHLUREE 5 R


https://doi.org/10.12677/csa.2026.162048

HHE 55

PR AL SE S BIRCELG, SERCAFRE R 5 T R R E oK. RGEIUL TR bR E Y2 4R,
AR AL A RS 38 N B AN 5 BonAi ), B bRRE E F AR DX, OREE LA SOCR IS T 2 32
RGN IHRERBELIN P 3 B, AR DD AEREE - (a3 i e 5 B Se BLZ AR AR

sdJjETEﬂ(iﬁYOLOvSnﬂ‘Jfﬂ%’éiﬂb}ﬂ'—5fﬁ‘&'ﬂfn’%EEI}JﬁE.V‘ﬁT‘.Hl%l/'J

e FE A RIR

v vV

[ P4 A 0 j [ SR ] B R B R
| l

AT R

AR 45
#

J& 7 A i
B

'i%ﬁﬁﬁ'

REFGR

ﬂﬁ%ﬁ&l

EAE S 2

BHASL

Figure 3. Functional module diagram of system visualization interface
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