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摘  要 

本文针对复杂环境下的多无人机协同搜索与目标发现问题，提出一种改进的粒子群优化算法。该算法通

过引入全局探索项、动态区域重分配机制、非线性惯性权重调整以及多目标适应度函数，有效解决了传

统PSO算法在无人机协同搜索中存在的早熟收敛、探索效率低、避障能力弱等问题。实验在100 m × 100 
m的搜索区域内进行，结果表明，相较于随机搜索和标准PSO算法，改进PSO算法在目标发现成功率上提

高了35.2%，平均发现时间缩短了42.7%，区域覆盖率提升了28.5%。同时，该算法展现出良好的避障

性能与通信保持能力，验证了其在复杂环境下的有效性与鲁棒性。本研究为复杂环境下多无人机协同搜

索与目标发现提供了一种高效实用的解决方案。 
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Abstract 
To address the problem of cooperative search and target discovery by multiple unmanned aerial ve-
hicles (UAVs) in complex environments, an improved particle swarm optimization (PSO) algorithm is 
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proposed in this paper. The proposed algorithm introduces a global exploration term, a dynamic 
region reallocation mechanism, a nonlinear inertia weight adjustment strategy, and a multi-objec-
tive fitness function, which effectively overcome the limitations of traditional PSO algorithms, such 
as premature convergence to local optima, low exploration efficiency, and weak obstacle avoidance 
capability in cooperative UAV search tasks. Simulation experiments are conducted in a 100 m × 100 
m search area. The results demonstrate that, compared with random search and standard PSO al-
gorithms, the proposed improved PSO algorithm increases the target discovery success rate by 
35.2%, reduces the average discovery time by 42.7%, and improves the area coverage by 28.5%. In 
addition, the algorithm exhibits good obstacle avoidance performance and communication mainte-
nance capability, indicating its effectiveness and robustness in complex environments. The pro-
posed method provides an efficient and practical solution for cooperative search and target discov-
ery in multi-UAV systems operating in complex environments. 
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Multi-UAV Systems, Particle Swarm Optimization, Cooperative Search, Target Discovery, Obstacle 
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1. 引言 

1.1. 研究背景与意义 

近年来，无人机技术在军事侦察、灾害救援、环境监测等领域广泛应用[1]。多无人机系统通过协同

工作可显著提升搜索效率与任务完成成功率，在复杂环境中优势突出[2]。多无人机协同搜索与目标发现

的核心是在有限约束下规划轨迹，实现高效覆盖与快速寻标，但该问题因搜索空间大、环境复杂、通信

受限等，属于高维、非线性多约束优化问题。 
传统的搜索方法，如随机搜索和基于规则的网格搜索，虽然实现简单，但存在搜索效率低、重复覆

盖严重、难以适应复杂环境等问题，难以满足实际应用对实时性和可靠性的要求。因此，研究一种高效、

鲁棒、具有良好协同性的多无人机协同搜索算法，具有重要的理论意义和工程应用价值。 

1.2. 国内外研究现状 

针对多无人机协同搜索与路径规划问题，国内外学者开展了大量研究，相关方法主要可归纳为以下几类： 
针对多无人机协同搜索与路径规划问题，相关方法主要分为四类：1) 群智能优化中，PSO 算法因简

洁高效被广泛应用，但传统 PSO 易陷局部最优，研究者通过动态惯性权重等策略改进[3] [4]；2) 强化学

习计算成本高，实时性有限；3) 人工势场法易产生局部极小值，多机协同时易振荡；4) 任务分配与市场

机制通信开销大。综上，平衡协同效率、搜索性能与环境适应性仍是关键[5]。 

1.3. 本文主要贡献 

针对传统 PSO 算法在多无人机协同搜索中存在的局部最优、探索效率不足、复杂环境适应性有限等

问题，本文改进如下： 
1) 提出改进 PSO 算法，引入全局探索项与非线性惯性权重调整，增强全局搜索与收敛性能； 
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2) 设计多目标适应度函数，综合区域覆盖、无人机分离约束及搜索引导，提升协同效率； 
3) 提出动态区域重分配机制，按覆盖情况自适应调整搜索重点，减少重复搜索； 
4) 融合改进 PSO 与人工势场避障模型，提升复杂环境下飞行安全性与稳定性； 
5) 构建仿真平台，通过与随机搜索、标准 PSO 对比，验证算法在搜索成功率、发现时间及覆盖效率

上的优势。 

2. 系统模型与问题描述 

2.1. 系统模型 

2.1.1. 环境模型 
搜索区域定义为二维平面区域： [ ] [ ]min max min max, ,x x y yA = × 。区域内存在 8ObN 个圆形障碍物，每个障

碍物 kO 的位置为 ( ),k kx y ，半径为 kr 。目标T 的位置为 ( ),t tx y ，无人机需要发现该目标。 

2.1.2. 无人机模型 
系统包含 uN 架无人机，每架无人机 iU 的状态包括： 

 位置： ( ) ( ) ( )( ),i i ip t x t y t=  
 速度： ( ) ( ) ( )( ),i ix iyv t v t v t=  
 探测半径： sR  
 通信半径： cR  
 最大速度： maxv  
 最小速度： minv  

2.1.3. 感知与通信模型 
无人机 iU 在时刻 t 的感知范围为以 ( )ip t 为中心、 sR 为半径的圆形区域。如果目标T 位于该区域内，

则认为目标被发现。 
无人机 iU 和 jU 之间的通信条件为： ( ) ( )i j cp t p t R− ≤ 。通信范围内的无人机可以交换信息，包括个

体最优位置和适应度值。 

2.2. 问题描述 

多无人机协同搜索与目标发现问题可以形式化为：在给定时间 maxT 内，通过控制 uN 架无人机的运动

轨迹，最大化区域覆盖率 ( )C t ，并最小化目标发现时间 ft 。 
目标函数可以表示为： 

( )( )maxmin 1fJ t C Tα β= ⋅ + ⋅ −  

其中，α 和 β 为权重系数， ( )C t 为时刻 t 的区域覆盖率。 
约束条件包括： 
1) 速度约束： ( )min maxiv v t v≤ ≤  
2) 避障约束： ( )i k k Sp t O r δ− ≥ + ，其中 Sδ 为安全距离 
3) 边界约束： ( )ip t A∈  

3. 改进的粒子群优化算法 

3.1. 标准 PSO 算法 

标准粒子群优化算法中，每个粒子(对应一架无人机)的位置更新公式为： 
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( ) ( ) ( )( ) ( )( )1 1 2 21i i i i iv t v t c r pbest p t c r gbest p tω+ = ⋅ + − + −  

( ) ( ) ( )1 1i i ip t p t v t+ = + +  

其中，ω 为惯性权重， 1c 和 2c 为学习因子， 1r 和 2r 为[0, 1]内的随机数， ipbest 为粒子 i 的个体最优位置，

gbest 为全局最优位置[6]。 

3.2. 改进策略 

3.2.1. 非线性惯性权重调整 
传统 PSO 算法通常采用线性递减的惯性权重。本文提出非线性递减策略： 

( ) ( )
2

max max min
max

tt
T

ω ω ω ω
 

= − − ⋅ 
 

 

这种策略在搜索初期保持较大的惯性权重，增强全局探索能力；在搜索后期快速减小惯性权重，增

强局部开发能力[7]。 

3.2.2. 全局探索项 
为避免算法陷入局部最优，引入全局探索项： 

( )( )3 max0.5 1,2 0.5explorev c v rand= ⋅ ⋅ ⋅ −  

其中， 3c 为全局探索系数。该探索项为速度更新增加随机扰动，增强算法的探索能力。 

3.2.3. 局部最优更新机制 
在标准 PSO 中，粒子只与全局最优粒子交互。在多无人机协同搜索中，每架无人机只能与通信范围

内的邻居交互。因此，本文采用局部最优更新机制： 

{ }
( )arg max

i
i jj N i

lbest f pbest
∈ ∪

=  

其中， iN 为无人机 iU 的邻居集合， ( )f ⋅ 为适应度函数。 

3.2.4. 动态区域重分配机制 
为提高搜索效率，为每架无人机分配一个目标区域 iR 。当无人机到达目标区域附近时，重新分配区域： 

( )arg minnew
i p A

R C p
∈

=  

其中， ( )C p 为位置 p周围的覆盖程度。该机制确保无人机优先搜索覆盖度低的区域。 

4. 探索奖励函数设计 

4.1. 探索奖励 

探索奖励鼓励无人机搜索未覆盖区域。对于位置 p，其探索奖励定义为： 

( ) ( )( ) ( )
( )

,explore
q S p

f p d p q R qω
∈

= ⋅∑  

其中， ( )S p 为以 p为中心、 sR 为半径的感知区域， ( ),d p q 为 p 到 q 的距离， ( )dω 为距离衰减权重： 

( ) 1
s

dd
R

ω = −  

( )R q 为位置 q 的奖励值： 
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( )

( )
( )

( )

15.0, 2Δ
5.0, 10Δ

2.0 ,
1

C q t
C q t

R q

C q

<
 <= 

 +

如果

如果

其他

 

其中， ( )C q 为位置 q 的覆盖程度，Δt 为时间步长。 

4.2. 分离惩罚 

分离惩罚确保无人机之间保持适当距离，避免过度聚集或分散： 

( ) 1

i

ij ideal
separation i

j Ni ideal

d d
f p

N d∈

−
= ∑  

其中， ij i jd p p= − ， 2ideal cd R= 为理想距离。 

4.3. 区域引导 

如果为无人机分配了目标区域 iR ，则区域引导项为： 

( )
max

1 i i
region i

p R
f p

d
−

= −  

其中， maxd 为搜索区域对角线长度。 

5. 避障算法 

障碍物对无人机产生的斥力采用改进的人工势场模型： 

( )
( )

( )

02
0

1 1 1 ,

,
10 ,

max ,0.1
0,

i k
s ik

ik s s ikik s

rep i k i k
ik s

ik

p O d d d
d d d d dd d

F p O p O d d
d

η

η

   −
− ⋅ < ≤  − − − 

=  −
⋅ ≤




如果

如果

其他

 

其中， ik i kd p O= − ， 5s kd r= + 为安全距离， 0d 为斥力最大作用距离，η为斥力强度系数[8]。 

6. 仿真实验与结果分析 

6.1. 实验设置 

6.1.1. 实验环境 
仿真实验在 MATLAB R2021b 环境下进行，硬件配置为 Intel Core i7-11800H 处理器，16 GB 内存。

搜索区域大小为 100 m × 100 m，分辨率为 1 m/像素。 

6.1.2. 参数设置 
实验参数如表 1 所示： 

 
Table 1. Experimental parameter setting 
表 1. 实验参数设置 

参数 值 描述 

uN  5 无人机数量 

maxv  2.0 m/s 最大速度 
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续表 

minv  0.5 m/s 最小速度 

sR  15 m 探测半径 

cR  30 m 通信半径 

obsN  5 障碍物数量 

obsr  [5, 10] m 障碍物半径范围 

maxT  200 s 最大仿真时间 

t∆  1.0 s 时间步长 

maxω  0.9 最大惯性权重 

minω  0.4 最小惯性权重 

1c  2.0 认知因子 

2c  2.0 社会因子 

3c  0.5 全局探索因子 

η  5.0 斥力强度系数 

0d  20 m 斥力最大作用距离 

6.1.3. 对比算法 
为验证改进 PSO 算法的性能，与以下算法进行对比： 
1) 随机搜索算法：无人机以随机方向运动，遇到边界或障碍物时随机转向。 
2) 标准 PSO 算法：采用线性递减惯性权重，无全局探索项和动态区域重分配。 
3) 改进 PSO 算法：本文提出的完整算法。 

6.2. 性能指标 

采用以下性能指标评估算法性能： 

1) 目标发现成功率： 100%success
s

total

NP
N

= ×  

2) 平均发现时间： ,1

1 successN
f f ii

success

t t
N =

= ∑  

3) 最终覆盖率： 100%success
f

total

AC
A

= ×  

4) 覆盖率增长速率：
f

c
f

C
v

t
=  

5) 平均通信保持率：
( )

( )1

1
1 2

T
c t

u u

E t
R

T N N=
=

−∑ ，其中 ( )E t 为时刻 t 的通信边数。 

6.3. 实验结果 

6.3.1. 单次仿真结果 
图 1 展示了改进 PSO 算法的一次典型仿真结果。搜索区域为 100 m × 100 m，包含 5 个圆形障碍物

和 5 架无人机。目标位于(75.3, 62.8)处。 
从图 2 可以看出，无人机轨迹分布合理，有效避开了障碍物，并覆盖了大部分区域。从图 3 可以看
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出，覆盖率随时间逐渐增加，在 145.2 秒时发现目标，此时覆盖率为 71.3%。发现目标后，所有无人机飞

向目标位置。 
 

 
Figure 1. Single simulation result 
图 1. 单次仿真结果 

 

 
Figure 2. Final search trajectory and environment 
图 2. 最终搜索轨迹与环境 
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Figure 3. Coverage over time curve 
图 3. 覆盖率随时间变化曲线 

6.3.2. 对比实验结果 
为获得统计显著性结果，每种算法进行 50 次独立实验。实验结果如表 2 所示： 

 
Table 2. Algorithm performance comparison (average value ± standard deviation from 50 experiments) 
表 2. 算法性能对比(50 次实验平均值 ± 标准差) 

算法 成功率(%) 平均发现时间(s) 最终覆盖率(%) 覆盖率增长速率(%/s) 通信保持率(%) 

随机搜索 42.0 ± 8.3 156.7 ± 32.4 51.2 ± 6.8 0.33 ± 0.08 38.5 ± 7.2 

标准 PSO 68.5 ± 7.6 112.3 ± 24.7 65.8 ± 5.3 0.59 ± 0.12 62.3 ± 6.4 

改进 PSO 92.8 ± 4.2 89.6 ± 18.5 79.3 ± 4.1 0.89 ± 0.15 75.8 ± 5.7 
 

从表 2 可以看出： 
1) 成功率：改进 PSO 算法的成功率最高，达到 92.8%，比随机搜索提高了 50.8 个百分点，比标准

PSO 提高了 24.3 个百分点。 
2) 平均发现时间：改进 PSO 算法的平均发现时间最短，为 89.6 秒，比随机搜索缩短了 42.7%，比标

准 PSO 缩短了 20.2%。 
3) 最终覆盖率：改进 PSO 算法的最终覆盖率最高，达到 79.3%，比随机搜索提高了 28.1 个百分点，

比标准 PSO 提高了 13.5 个百分点。 
4) 覆盖率增长速率：改进 PSO 算法的覆盖率增长速率最快，为 0.89%/s，表明其搜索效率最高。 
5) 通信保持率：改进 PSO 算法的通信保持率最高，为 75.8%，表明无人机之间保持了良好的通信连

接。 

6.3.3. 不同无人机数量的影响 
为研究无人机数量对搜索性能的影响，进行了不同无人机数量下的实验。结果如图 4 与图 5 所示： 
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Figure 4. Success rate varies with the number of drones 
图 4. 成功率随无人机数量变化 

 

 
Figure 5. The average detection time varies with the number of drones 
图 5. 平均发现时间随无人机数量变化 

 

从图 4 与图 5 中可以看出： 
1) 随着无人机数量的增加，所有算法的成功率都提高，平均发现时间都减少。 
2) 当无人机数量为 3 架时，改进 PSO 算法的成功率为 78.5%，平均发现时间为 34.7 秒。 
3) 当无人机数量增加到 7 架时，改进 PSO 算法的成功率提高到 96.2%，平均发现时间减少到 21.6

秒。 
4) 改进 PSO 算法在不同无人机数量下均优于对比算法，特别是在无人机数量较少时优势更明显。 
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6.3.4. 不同障碍物密度的影响 
为研究环境复杂度对搜索性能的影响，进行了不同障碍物密度下的实验。结果如图 6 与图 7 所示： 

 

 
Figure 6. The success rate varies with the number of obstacles 
图 6. 成功率随障碍物数量变化 

 

 
Figure 7. The average detection time varies with the number of obstacles 
图 7. 平均发现时间随障碍物数量变化 

 
从图 6 与图 7 中可以看出： 
1) 随着障碍物数量的增加，所有算法的成功率都下降，平均发现时间都增加。 
2) 当障碍物数量为 3 个时，改进 PSO 算法的成功率为 95.6%，平均发现时间为 84.2 秒。 
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3) 当障碍物数量增加到 9 个时，改进 PSO 算法的成功率下降到 85.3%，平均发现时间增加到 102.7
秒。 

4) 改进 PSO 算法在不同障碍物密度下均优于对比算法，特别是在高障碍物密度环境下优势更明

显。 

6.4. 算法鲁棒性分析 

为验证算法的鲁棒性，进行了以下实验： 

6.4.1. 参数敏感性分析 
分析了主要参数对算法性能的影响。结果如表 3 所示： 

 
Table 3. Parameter sensitivity analysis 
表 3. 参数敏感性分析 

参数 变化范围 成功率变化(%) 发现时间变化(%) 说明 

3c  0.2~0.8 88.5~93.2 +5.3~−3.8 适中值(0.5)效果最好 

η  3.0~7.0 90.2~91.8 +4.2~−2.7 适中值(5.0)效果最好 

maxω  0.7~1.0 89.7~92.1 +6.8~−4.5 0.9 效果最好 

1 2c c  1.5~2.5 90.5~92.3 +3.9~−2.1 2.0 效果最好 
 

从表 3 可以看出，算法对参数变化具有一定的鲁棒性，在合理范围内参数变化对性能影响较小。 

6.4.2. 通信故障测试 
模拟了通信故障情况，随机选择部分无人机在部分时间段内失去通信。结果如表 4 所示： 

 
Table 4. Performance changes under communication failure 
表 4. 通信故障下的性能变化 

故障比例(%) 成功率(%) 发现时间增加(%) 覆盖率下降(%) 

0 92.8 0 0 

10 90.5 8.3 3.2 

20 87.2 15.7 6.8 

30 82.4 24.6 11.3 
 

从表 4可以看出，随着通信故障比例的增加，算法性能逐渐下降，但在 30%故障比例下仍能保持 82.4%
的成功率，表明算法具有一定的容错能力。 

6.5. 对比实验与消融实验验证 

为进一步验证改进粒子群优化(Improved PSO)算法的综合性能与优越性，设计了多维度对比实验与消

融实验。对比实验选取 6 类具有代表性的搜索算法作为基准，涵盖基础搜索方法(随机搜索)、经典优化算

法(标准 PSO)、经典改进 PSO 算法(FIPS、CLPSO)及非 PSO 类群体协同算法(蚁群算法 ACO、人工势场

法 APF)，确保对比体系的全面性与代表性；消融实验则通过逐一移除非线性惯性权重、全局探索项、动

态区域重分配、改进 APF 四大核心模块，单独验证各模块的独立贡献度及模块间的协同效应。所有实验

均在 100 m × 100 m 含障碍物的复杂环境中开展，基于 50 次独立重复实验的统计数据，从目标发现成功
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率、平均发现时间、区域覆盖率、通信保持率等关键指标进行量化对比，以客观、全面地凸显改进算法

的性能优势与设计合理性。 
 

 
Figure 8. Comparison of comprehensive performance improvement between improved PSO and multi-class comparison algorithms 
图 8. 改进 PSO 与多类对比算法综合性能提升对比 

 

 
Figure 9. Comparison of ablation experiment performance across various improved modules 
图 9. 各改进模块消融实验性能对比 
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Figure 10. Comparison of multi-algorithm performance under different drone quantities 
图 10. 不同无人机数量下多算法性能对比 
 

 
Figure 11. Quantitative graph of performance improvement of improved PSO compared to various comparative algorithms 
图 11. 改进 PSO 相对各对比算法性能提升量化图 

 

 
Figure 12. Improving module contribution decomposition and synergistic effect analysis 
图 12. 改进模块贡献度分解与协同效应分析 

 
实验结果通过五幅图表系统呈现改进 PSO 算法的性能优势与内在机制：首先以综合性能提升对比图
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直观展示其相对随机搜索、标准 PSO、FIPS、CLPSO、ACO、APF 等多类算法的整体领先地位及各核心

指标的平均提升幅度，图 8；再通过消融实验性能对比图，拆解非线性惯性权重、全局探索项等四大模块

在覆盖率、发现时间、成功率等多维度的独立贡献，图 9；接着依托不同无人机数量下的多算法对比图，

验证算法在 3 架、5 架、8 架等不同系统规模下的适配性与稳定性，图 10；随后以量化提升图用百分比/
百分点形式精准凸显改进算法相对各类基准算法的性能增益，图 11；最后通过模块贡献度分解与协同效

应分析图，明确动态区域重分配模块的核心作用及全模块组合的协同增效价值，全方位、层层递进地验

证了改进算法的优越性与设计合理性，图 12。 

7. 结论 

本文针对复杂环境下的多无人机协同搜索问题，提出了一种改进的粒子群优化算法。主要贡献包括： 
1) 设计了改进的 PSO 算法框架，引入全局探索项增强探索能力； 
2) 提出了多目标适应度函数，综合考虑探索奖励、分离惩罚、区域引导等因素[9]； 
3) 实现了动态区域重分配机制，根据覆盖情况动态调整搜索策略； 
4) 集成了基于改进人工势场的避障算法，确保飞行安全； 
5) 建立了完整的仿真系统，进行了系统的实验验证。 
实验结果表明，在 100 m × 100 m 的搜索区域内，改进 PSO 算法相比随机搜索和标准 PSO 算法，目

标发现成功率提高了 35.2%，平均发现时间缩短了 42.7%，区域覆盖率提升了 28.5%。算法具有良好的鲁

棒性和容错能力，为复杂环境下的多无人机协同搜索提供了有效的解决方案[10]。 
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