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Abstract

To address the challenges of small target scales, limited posture variations, and high visual similarity
among different student behaviors in classroom scenarios, a novel YOLOv11-RMS model is proposed.
Based on the YOLOv11 framework, a Restormer-based feature extraction module is incorporated into
the backbone to enhance global feature modeling through long-range dependency learning. Subse-
quently, a multi-level channel attention mechanism (MLCA) is integrated at the end of the backbone to
strengthen discriminative semantic features while suppressing redundant information. Furthermore,
a spatially adaptive feature modulation module (SAFMP) is introduced in the detection head to recon-
struct and enhance upsampled shallow features, thereby improving detection robustness in complex
classroom environments. Experimental results demonstrate that the proposed YOLOv11-RMS model
achieves mAP50 scores of 72.6% and 84.9% on the SCB dataset and the self-collected classroom behav-
ior dataset (CLASS), respectively, outperforming existing mainstream methods.
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1. 5]
Bl B EHE AWHED, RSN S AR B R T B b T, IR HT N A BR

5N TGRS AU B 7T 1) A A PR AT AAE A S R 3 RS 5 2 A 2 S SR B B Ay

fiE, F B ZIS R T FUEAT T DU B R R i B R S A ]

H bR AT 55 B IR J7 325 0] 43 D R Bk 0 A S i BRI I 28 o Ui B B A 77 ¥ 5 AR e [X
AT o RAEALANAL, ARSI BB — %, EHIFRIFHECR, W R-CNN[2]. Faster R-CNN
[B15 715 BB G e S 5 KRG — N —IRIENE, eSS E w2 A St 14, 4 SSD [4]4
YOLO [5] &4 25 AERBAT AR ISR, B0 A 1l i oodk B bRt B8 () 4549, DARIX /N REE H br
IS 44 B R APk iR . B4, Chen 25 N\[6]7F YOLO-v4 5] N A1 Repulsion Loss, LAZEfiF i
P FER A AR . Jia 5 A[7]# YOLOVS SAEFRIER JJ44, JFBCE OpenPose %825 fli tHH Tl XL
F. Peng %5 A[8]#2H 3T YOLOV1Os ) YOLO-CBD #4Y, il yE= AMLE]. RRAER AR HE M AR R AR
1% RJZ HFRHMZRI . Sheng 25 N[O HZET YOLO 484, iliid £ KT KBRS 4E AL R e
s A E RJZAE BREEERE ). RE IR TIVEE —ERE BRI TR TERE, (BRI R & 224 B s RUE
BN ANFEREATAESNURHE b BRI 2050, MAE RO B2 MRk AR A IR .

EEX IR, AL YOLOVIL [10] 25284, I RHAFAESREL . 1 SO 2 (a5 B RIS AT
PrIFI g g, OB AE S R I 5 IO SR AT N X SURHIE M R IA e ), dE A i 1 —FhoBi ) YOLOv11-
RMS #8Y, SR PR AT R Rt 7 — Ml AT I E R 7 %

2. YOLOV11-RMS $&EH!
2.1. YOLOv1l1

YOLOV11 HAKGES: | YOLO R 5k F . B BB TH B AR . SRR T C3k2 A5 LAY iRy

ik
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AEPEHCS R BE 77 C2PSA S FayJ it 2% [F)3 J AL | 3 iR ik Pl A 2 (D 4B J5E b AR 2 RE AT, R 4% g %
BN SGVE B A A R SR 2 A XSk SRR 45 R PAN S54, TR B T0A R 5 B R ) _E A R AR
fo, AR BE RS L R G v 2 8 SO S I R AT R OR B 2 S R AT, AT B2 THAS [RDR BE RS 2 18] 1 5 .
. ERIKTTT, XIS AR S AT AR A, T BT AN RS M LA e 5, SRl
FUAE [T Y= RS 2R K5 T FR R 5 17k

2.2. YOLOV11-RMS

2.2.1. BER

YOLOV11-RMS #E R B AR BOR 1 [4] 1 flras . 15, BEAYEARFE SR UM B 51 NJE T~ Restormer [11] )4
TEEEAE TG, DA SRR AR R ZIE RE 7). LR, (ERMERRS 53458 BL, # C2PSA S5 5k &
JRER - 4R iEIEE R I HLH MLCA [12] (Mixed Local Channel Attention)fH45 &, FIH R 5 4= iEiE 4t
THE B M FEERAL. R, 5INFET23 6] E S S fi) AR O RRAE S50 A5 SAFM [13] (Spatially-Adaptive
Feature Modulation), XPRFEHEATE— D E M 558, DIIREEMAER RS P RiAR et S 6%
Mo BEAREERITELRUE T FRCRIG RN, SEBL T 0 B AT N XI5 SR 10 B8 AT RIGRAE
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Figure 1. Framework of the YOLOv11-RMS architecture
[ 1. YOLOV11-RMS ZE#9 [

2.2.2. C3k2_Restormer

Restormer %0 BUARZE T30 A4 B iF = ) 1H 57 20, AEORSR 4 R B 0 11 e i) 2 25 FRAIS TR B %
fE. teAh, Restormer 3@ 51 NVRFERT 73 B AGAREEM, AR v SR I Bt R B B A RE ), AT
TERZR S RIB e ) 2 AU R AP AERREEAT RT3, AR G5 AR 28 78 B K BR 35 1 5 42 /)
RO HAAE SRR, Ak, ARSCAEFETFMEEH 5] N T C3k2_Restormer #iHk, HAARLE MK 2 By
TNe ZARHL R S I AR 6 i N R AE AT R R S AR IE SR, MRS AR Z RESSERS
(Multi-Dconv Head Transposed Attention, MDTA)FH [958 £ 11 15 % £ (Gated-Dconv Feed-Forward Network,
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Figure 2. Architecture of the C3k2_Restormer module
[& 2. C3k2_Restormer R LEHIE

2.2.3. C2PSA_MLCA

C2PSA_MLCA HHLR LR A C2PSA 5 M3l b 5| NTR S &3 - & RdiEE=E /7 MLCA, Bt
— BRI E A FIARIE A ) 5 RIS TTEEME, HA5WE 3 k. MLCA @i x4 NRHAIE 73 il idk
AT Rt A 5 4 Rt Ak, FRECAS R i B 5, I — e AU 8 (A AE G PR AT S,
AR R E R 5 4 5 BB IE A E o A H T RE AT AR E, AT SR B I i X
FHEFEHIHITTARAE B . ¥ MLCA R\ C2PSA IFHIEAZ #7335 , IFAE PSABIlock PIAE R 15t 14 58 . I
S 5RHETE, 5 EG 2 0 SCRHER S LRI R TAE. — 71, C2PSA it J-AT 45 Sl 2 RE
SRR HSRERSG, ARSI EFE WIRIEERAE: 577, MLCA XERE 5 RHERT I8 IE
PEFRE, F NSRRI AL G R T AR 8 A BOh R B A S EFHI S st . M S e RIETH
SRR FI , A O8RS R F I SRR e, a2 B ARSI AT 55 52 A1t 55 00 ] 5 AR AR LAl

Figure 3. Architecture of the C2PSA_MLCA module
[& 3. C2PSA_MLCA #&REEHIE
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2.2.4. SAFMP

T SAFM 17 10] [ 3 RERFAE @A EAR, AR SCAE IR B ol T Fh B N AR B AL (R AE 1Y s AR
SAFMP (Spatially-Adaptive Feature Modulation Package), 1| 4 AT, 2 A5ER 1 2 38 i o5 A0 il S 5o i N e
IEBHAT B LG —, NEEAE BRI — W oR ). BESE, 5INTEA) H SRR AE R T, X
FREEAT EINAL . 12 FRIE 456 R i DX BA5 B 5 R SRR E R S A2 R B R SUE R, Sl
o AN [ 753 ) o7 B AR AIE P B S A, AT 4 A RS0 O DX 3 P S R 8 1 JE AR TO AR T S0 N, o 7 S8
IRYERE FRRHIERG SRS, RRAEE— P N8B R A A (Convolutional Channel Mixing, CCM), DL
TE 2 8] A G . AR HOE I AR SIS W5 B B, BT S G T A B He 45 1 1) 188 3 AR
Jra, EORUERIKRE J7 1 [E I 2 PRAS 7 oF T8, IR 7 RERHME @R ). R, BEHCR
T& R EHE(Pixel Shuffle) )77 XX RHAEZEAT 2 (B AL, AR 5 7 HRER R R R, (3G 5 IR RRAE B
AT 5 SR Sk #4700 5 RE A
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Figure 4. Architecture of the SAFMP module
[ 4. SAFMP 1RIREEH[E

3. SKEWE S
3.1 WIRSKR LW

3.1.1. HIEE

ARSI R A FF AR S SCB [14]R1 5 152 W ATy B i CLASS AT HAIE . 1 1 ¥ 42 CLASS
IAE 12 I B AR, 40590 948 F FHL(using_phone). 344 (upright). 2T (hand-raising). i (reading).
44725 i (bend). 1i%k(bow_head). #:3k(turn_head). 55 (writing). #4:k(raise_head). & (sleep)&say:At
WEAT R K FHl(phone). 54 (book) 55547 A i FEAH R i 2800 o AR S CLASS $df £ v % 2 FE A
HEIAT T, SRR 1R, rEBIEERES R IHAT T E A0S AR, Y
HFS%ARBEFH . ARERFEBIWIE 5 Fn. NP EARRRAL S, FEEIHEERIX S8 34T i ik
ELiE
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Table 1. Number of samples for each class in the CLASS dataset

5% 1. CLASS HiR&E &L AR =

ENl| FH i &k i FHL REES 5
g 6879 2239 54,284 19,031 24,372 10,298
eS| ek L3E 25 il S A i A fik P
HE 4635 33,963 16,861 61,945 15,891 27,231

. ’ ‘
Q‘A
- -

1) FHRFHL (2) sk (3) #F 4) P (5) GRS il (6) FA

(7) &3k (8) ¥k 9 H5 (10) Ak (11) B (12) F#l

Figure 5. Representative samples of each category

B 5. KA FRAEH

3.1.2. XWHRRELWHFRITE

AHE L5 7E NVIDIA GeForce RTX 4060 Laptop GPU “F- & | 58 i« £ 84 S LE T Python iR A A 3.9.21,
K H PyTorch 2.2.0 R FE 2 SIHESE, FFiEiE CUDA 12.1 #HAT Ik . IR B s — K N R1G2) HE R i 5o
640 x 640, Ab8% KFH SGD, #IUH2E31% N 0.01, shaH 3 E N 0.937, BEZEWR RN 0.0005, H#HEk
NEE A 16,
3.2. Wifiedr

N SR 2 R R AT ARSI 45 v ARG WU 1 5 B AR PR R, AR SR R # 2% (Precision, P) 74
7% (Recall, R). ~F¥JK5 % (Average Precision, AP). ~F-XJHE B (MAP) I BRI RETEAN S bR, TH5HTT
PN ~@) R, Hrfr, TP B AL R R IR R TN IE SR E0RE . FP RIS Y A iRtk 1 S Tt
NIERMI R . FN A R R O 1 2R T A f S i B

Precision = P (&)
TP+FP
Recall = —1* )
TP+FN
1
AP:joP(R)dR (3)
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N
mAP:%Z%R @)
i=1

AL [FEI 5] NS $ B (Params) . 11575 24 FF (GFLOPSs) LA & HE 34 1% i (Frames Per Second, FPS){E A%
WA 4EbR. AR, Params T AR AL AR S5 A7 T8 . GFLOPS R A% 7R B YR T [ 4 2 BT 75 177 0t
iZH R, FPS T B 7 S PRt B B 1) S Ab 2 B

3.3. LWER RO

3.3.1. MG ESWEE T

A BT TR A R AR I G AR R AR R S UREIAT e, ASORH SRS I ZRBA B 145 AR A A% LA T
T &G M. W 6 iz, YOLOV11-RMS 7E H @ 85 5: CLASS ERJUIZR S 5 iEid A2 i 3R B HY R 47 i
SR . BEEINZE I, M BIF) box_loss. cls_loss 1 dfl_loss 5 S BIFF4: R &, HPE
IR GRFFEUNERR, X RUIERRAE > A2 h B BT A et 5z A0 Re J) o 1 FAE [a] 11 41 2k 5 43 2645
RIGEERTIAPUR TR, BERZEE TP, SRR RS A R0 2] BARIIALE R B SRR . RS
HIEZ L& mAPS0 FiT mAP50-95 4 BE I ZR5e O N g e 88 mr, FRESRE B T U, BAokE,
HERAE B R S E VI gRid BREAR e HLRR AT R0 S RHIE, AR EEvEReXS L SR $R (it 1 n] SEJEAT .

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
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Figure 6. Changes of training loss over epochs

& 6. WZIRKLFEE R

3.3.2. CLASS #i#E& L RO MEREXTEE

VTR B @B CLASS LR IIERE, 5 2 44 7 YOLOVL11-RMS fEAN[RI4T R 2 L i ks il
i, o, mAP FEFR LT BT RO 2 T R SR IIMERE, SAT RIS AR A T
BRI EAT A MR . v LVE Y, SO A AL Gk FA Sk S RS RHIE ] B 1047 N
IR T B E RS, U R RS AT AR SR 2R AT O ) SR AR (R RRAE . AL B AR RUE RN HL G
PeF Sy, B0 FHE R A2 AR E FEE R TN B S E R, TN 5 “Rik” <P
57 S AL, R S PR AR IR . R 5 N C3k2_Restormer 5 C2PSA_MLCA #&7t 1 ¥ 1iE
()4 JR AR A B 7 LB T VB SCE B R, RTERR /N B AR 5507 UM S A R ATS 52 B3 N RRIE (S B 21
W2y JE8: TAEPEBA AR B ol NS S R AHIE R, DMAREZRE T RATE LR, Mg —
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Table 2. Detection performance of YOLOv11-RMS on various classroom behavior
7% 2. YOLOV11-RMS 7E & HKIRE1TH LRI BE

Jixi) mAP50 AP
FHl Bt ik 1 FHFAL
59 91.2 95.6 77.6
SEEN 5 B3k ] 52
YOLOvV11-RMS 84.9
89.4 80.6 75.8 81.3
B E=EUN Uit A a3k ZF
91.7 97.6 95.5 83

# 3 Xk YOLOVI1-RMS 5 YOLOVSs [15]. YOLOV8n [16]45 i H brtaill A AL 4E CLASS #ff 4
RIS R SRIRAE AR, YOLOVLL fE iSRS ER AR IR T YOLOVSs Al YOLOV8N, 1B 5
SRIRHIE R JE B AR st B — e . ool e BR/E & TN fabn B3 IeTt, Hd g
[0 78.6%32TF £ 79.7%, mAP50 Hi 84.1%#2 T % 84.9%, mAP50-95 Hi 60.4%32 7% 61.6%. LI L45H%
Y, HALET C3k2_Restormer 158, (ERFIESEHUF B 78 73 U B4 RiE S ., 454 C2PSA_MLCA
BT 7 s ZRHE A BE 7T, SAFMP R — 385 1 0% Jey S840 7 5 7 (8] 45 K4 1) %) )

Table 3. Performance comparison of mainstream models on the CLASS dataset

52 3. ERIEBIE CLASS ¥R FMREXTLE

T Precision (%) Recall (%) mMAP50 (%) mAP50-95 (%)
YOLOV5s 82.3 76.7 81.3 59.8
YOLOV8n 83.9 78.2 82.4 60.1
YOLOv1in 84.4 78.6 84.1 60.4

YOLOV11-RMS 84.6 79.7 84.9 61.6

3.3.3. SCB #iE & LYt REXT L

Nt —BEAE YOLOVI1-RMS 7EAS [F 804 40 A1 26 A0 R Iz AR 1, A SCHEA T HdE S SCB BT
TAFLESEES, SR ah RN 4 Fion. 5 YOLOVLL JRAGHERIAHEL, YOLOV11-RMS 7ERGHER . A IR LK
MAP50 fEbr EIES T — & t, HAREHRH 70.9%8TH % 71.5%, ARFH 63.8%THE 65.2%,
MAP50 Hi 71.1%$& % 72.6%. 7E mAP50-95 fe#r b, oSt eR! AR 0t /MiE$E . YOLOV11-RMS 7E
F50 H AR T S TN, T E — g AR BE ] T A XIS B BT . AEAE 4 10 SR B
REEB/N BAR b, wlae R EUb & MR IS g, T A Bl 225K T YOLOVS.

Table 4. Performance comparison of mainstream models on the SCB dataset
= 4. ERAERIE SCB HUBEE HHRExTHE

Y Precision (%) Recall (%) mMAP50 (%) mAP50-95 (%)
YOLOV5s 61.8 67.8 67.9 475
YOLOV8n 63.9 69.6 72.2 52.1
YOLOv11n 70.9 63.8 71.1 51.4

YOLOV11-RMS 715 65.2 72.6 51.8
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3.3.4. jHRASCIS
RIGUE I NS H R PR R AR MY, DL YOLOVLL SNFEHEREA, iZT N C3k2_Restormer.

C2PSA_MLCA &5, SAFMP YR IFATIHBISEES, SEIRZE R 5 fiom. MR ATLIE H, FRAEsAY
FEAR G NMEAT GBS, mAPS0 F1 mAP50-95 7374 84.1%11 60.4%, [7] i 2. 2% % vy 1) BH 3ok 2 A
IR 5 2% B2 . 5] N C3k2_Restormer 5, SRS 2 4 & A5 24 BT i, {2 mAPS50 #1 mAPS0-
95 43 HIFET+Z 84.4%1 60.9%, FHAFET Restormer IRFEFE 1 BE 0 3 SR A 10 42 R RIABE 1o 78 B3R
255N C2PSA_MLCA bk, BEAKGIEGE4RSARTE, 2 2 IMIE S PR CHE SURE B AT
WRRAEF o 2 =R I 5N, AR B AR A U B, mAPS0 Al mAP50-95 /3 iliA R 84.9%F1
61.6%. ZEE KA, ZHHYMNETING, BALERIIRS B SR S 2R B 2 RIS T BON & BT, SR
T AT SRS A R

Table 5. Ablation experiment results
F 5. HMSKIER

C3k2_Restormer  C2PSA_MLCA SAFMP Params  GFLOPs FPS mAP50 (%) mAP50-95 (%)

x x x 2.59 6.5 833.3 84.1 60.4
% x x 6.35 29.1 588.2 84.4 60.9
v v x 6.28 29.1 588 84.7 61.3
J \ 9.48 39.3 500 84.9 61.6

4, 4Eip

AL SR B I 5N FAAT IR IAT S, 6F B AR IR () S5 HEAT T R R, R T T
YOLOV11 gl YOLOVIL-RMS. i8IS 7E 3= F M 25 5] AT Restormer FRFIENG s, JHERY
TERRA Y B 22 S B v L], A BRI TN B A soh 2 R HARIIRAERE ). SRI0 45 R
R, BT A VEAE ORI R UK B2 (0 (R B, JE—D s T R E S T R IS it SRR oE M.
Aok TAE AT 3 — 20 MR8 50 56 J5 TR TR AN AL

B oW

B PR 48 T SCRF S T BN A S AUER BB . SRS R B R A 5 R T R b 45 T 95 B A DR
P IERAMIE SR SRR B ORI T IO AT A5 S298 TARS LR APt T fE . IBARE 51 2 [F]
RAF I A R A (A ARSE, ATE TR HERE RIS 1 RS 261

EHEWH

T B 48 R 25 1 R (242102211065 . 252102211075), ] B 44 61 5 B RL BN A BAAT K TR
(CXTD2017099), i 44 F 70 A= 2 ot i TR0 H (YJS2025GZZ36, YIS2024AL112, YJS2024JD38).
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