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Abstract

In practical indoor acoustics applications, the number of measurement points is often limited by
measurement conditions, sensor deployment, and acquisition costs, resulting in sparsely sampled
sound field observations and posing challenges to accurate reconstruction of spatial sound field dis-
tributions. To address this problem, indoor steady-state sound field reconstruction is formulated as a
function approximation task that maps spatial coordinates to sound pressure amplitudes. Based on
this formulation, a sound field reconstruction method integrating implicit neural representations and
physical constraints is proposed. The proposed method is built upon a multilayer perceptron archi-
tecture and incorporates positional encoding and sinusoidal activation functions to enhance the net-
work’s capability in representing complex spatial oscillatory patterns. Furthermore, a physics-con-
sistent constraint derived from the Helmholtz equation is introduced to guide the network toward
learning sound field distributions that conform to acoustic wave propagation characteristics under
sparse sampling conditions. The proposed method was systematically validated under different sam-
pling rates and frequency conditions. The results demonstrate that, compared with conventional mul-
tilayer perceptron models and baseline models employing only positional encoding, the proposed
method achieves higher reconstruction accuracy and improved stability under sparse sampling, while
effectively suppressing non-physical oscillations in unobserved regions. The proposed approach pro-
vides a feasible modeling framework for indoor sound field reconstruction under limited observation
conditions.
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Figure 1. Overall technology roadmap
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Figure 2. Sound source and sensor layout scheme

B2 FRREREHERR

R ARG RE R, EE M = N E R LA, SR E AR S RO A B, X H AR T
RSP AT HE R K 2 250 7L 3R B I T ) (R AT B R, o R I AR ST IR

DOI: 10.12677/csa.2026.162041 94 THENUR S 5 R H


https://doi.org/10.12677/csa.2026.162041

T

S TE I T8 (1) B SCF TR  HEAT o 20 B R T B 7 3% 5000 10 2 B SRR SR A X, Oy 5 SR EE R AT
FHRAEG— BB,

TESAG SEREFE G AT NG, AT A B P R AE AT U RS AR FE, TERUELEE S H 4R .
BEJS, M TEBE A% mU B Hh B LI R 7 23 (B2 BAE D 0 s, R AN BSR4 52 PR i 7 7 WL 04
FH DAL SE il B 251 R A PR AL 28 A0 B TSR3 0 75 37015 JE o R A% BRI e 1) 2 ) o7 AN T A5 7Y
AR B AR B R A . 7E BARSRIG A, $EHL 125 Hz. 250 Hz F1 500 Hz = AN ARUR A A 7T
X R o EEXTRRAN A Sy T A R L 1) 2 A ARAS TR I B, FEAEAR [FRAE S MRS AR A, H
CAGI T BT T VETEAS [F) AT 2R 2% 1R 1 1) B s 1 i o

x-position [m]
3

SPL [dB]
X-position [m]

N

8

SPL[dB]
x-position [m]

4 45 5 55 6
y-position [m] y-position [m] y-position [m]
(a) 125 Hz (b) 250 Hz (c) 500 Hz

Figure 3. Steady-state sound pressure level distribution diagram in the mid-to-low frequency band
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Figure 4. Training data sampling point diagram
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Figure 5. Comparison of MLP reconstruction results at 125 Hz and 20% sampling rate
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Figure 6. Comparison of PE-MLP reconstruction results at 125 Hz and 20% sampling rate
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J x y 0.937 0.949 10.43% 9.20%
\ V Y 0.978 0.982 6.10% 5.48%

MIHREEE RATUAE H, SCRHAT PE-MLP /N BE BRI, AN 5 4 B vh UMD R 2 5
HLoRE R 8 R R AR AR, RUIERMBERFESRAE T, A7 B g i AR5 475 30 AR e 220 75 37 14 52 2%
AR A -

£ PE-MLP Ziih_E 51N J10R B80S, B & TR b IR 2 32T . Mtde 5 i S
MR ZE W AR, RO ELIRI D3R e, Ui B R ST R 5T B 348 59X 208 ot 75 37 J O P 5 v 0 2 TR R
RIKBEST, NI S0 BE AR UL 5 AR

ANAE PE-MLP AR b 5] N BE—EPE 290y, AR R R B L W R AP RE S T . AHEEAL ST
Je S eR O I T, B 2 SR AU ) 00N 235 2R ) AR M BR IR 3 75 T R L S R A ARE AR A, AR
5 el EERE R RE S G LY RERBE— 2k

(R 51N A TG e K S B B E LR, MR B PR R b B BUS R AE R . iSRS
S EE AR REDE PG, R EHGE 1, RUIBRAM R MR L& e, 38 REAE AR X
Sl P RS RE VKR 7R I ) R AR A 1) 0 A

ERETHRRSCI SR TTA,  FA HG oR R R TSR 7 7 R IR v S5 A R IK RE 0, TR — 21
PEZ) RN A R0 Sm AR R AE B R AR SR AT T AR EVE S B G B . S IR, SREIM R T P Ui
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BT %

HERESE IR 2 .
4.3. SMBHFEXIEE

NRE— B RAIE AT VETE E N R I E AT S PR SS, ASCEMRSESE . RASRIS 5PN 48
PRARAETN, B RTER TR S 2 Fh SR 3 B R D VEIEAT 0 EE AR AT o R B O VR AR XU 1 4 1 (Bilinear)  ~FTHI
W R (PWD) BT 2 A1 (GPR) BA K A% ) 5 bR B i 22 I 26 (RBFNIN) - % E 25 SR T35 4, Tk
AR (125 Hz 250 Hz\ 500 Hz) AN FRERFEZR 51 T B E RE R? 5AIXTR % RelErra. Horr, X&
PESEAEAE N — P2 S 25 (A 70, s BRI 2ot R, B s 4 L o 4 o L RO0 ) ) 2 e A
KRHME o VI 4R )5 2R LT Tikhonov 1E A 15/ — TR g 5 30, FHAT KA [F) R FERS 7 R 441
T BGUE A IE WA S B0 ST T ik o B AT I R S Ak, DA R FLAE AR B 0 I 2% A T ik B R A
AVERE . T AR A1 VA 5 A 1 5 R B 4 D 2 3 R B 2 A SRS, b, GPR SR A E LI AR ) 2
PR, B i KA AR5 =k 2 HE 240 RBENIN [ B 251 55 30 S AR 96 2 S0 it 30 iE S 33 AT
L. PR S B0 B LA S5 7R 38 FH S SR, B G 5N BT R IR R BN, M
T PR AIE X B gl SR 2 Ak

Table 4. Comparison of reconstruction performance of different network models

F 4. TRIMBIER N EZ M REXTEE

Bilinear PWD GPR RBFNN RIT5i
R? RelErr R? RelErr R? RelErr R? RelErr R? RelErr
10% 0.3351 3351% 0.6601 23.96% 0.9544 8.78% 0.9215 11.52% 0.9518 9.02%
125 20% 0.6000 25.86% 0.6755 23.41% 0.9726 6.80% 0.9424 9.87% 0.9822 5.48%
30% 0.7490 20.59% 0.6761 23.39% 0.976 6.36% 0.9438 9.74% 0.9891 4.29%

B IHz SRR

10%  0.2728 3547% 0.307 34.62% 0.5844 26.81% - - 0.8896 13.82%
250 20%  0.5332 28.42% 0.4159 31.79% 0.6476 24.69% 0.629 2533% 0.9451 9.75%
30%  0.7196 22.02% 0.4373 31.20% 0.6778 23.61% 0.7191 22.04% 0.9932 3.43%
10%  0.2001 43.26% 0.0289 47.66% 0.2064 43.09% - - 0.2882 40.81%

500 20%  0.4931 34.43% 0.151 4457% 0.4383 36.25% 0.2095 43.00% 0.8150 20.80%
30%  0.6319 29.34% 0.2145 42.86% 0.4904 3453% 0.3844 37.95% 0.9170 13.93%

FE 125 Hz S50 F, 8 77 V5 S A 31 Xl ARG LIS, (BEE M B R st A A AE I R RE 22 5 .
KAEH Y 10%IN, Bilinear 5 PWD 75 (1) R? 73 71X 4 0.3351 1 0.6601, Xif AHXT 2 2 8L 23%, #
BA A% e B 5 56 T P T B B 1 7 IR AE AR SRR 264 N M DLHERR K B 5 34500 . Hoh, PWD
PET A RECE P RS A, H B @ SO T 5 3 P o S, ZEAUR A R
15 B B REE BT, BIBRIARE )2 B — & Rfil. GPR 5 RBFNN 7EZ% M N RILELT,
R2 73 liA 2] 0.9544 F10.9215. Frfg /7 iATE 10%: K FE2 N HLH R? = 0.952, AMHXTiRZE N 9.02%, M4k
it 5 GPR £, BEALT RBFNN. Bl & KA R A 20%5 30%, Frie J5ikn R 4r A4 T+ 4 0.982 5
0.989, HHXTiRZEPE % 5.48% 5 4.29%, 1E#%F L7 ik R IR FR IR BB S AR KT . BRI, 18
AT HRFE R 2T N, AN R S adh 77 32 2 6] 1) P 8 22 BE OB 4 /1N, BT 7 i AL 34 2 BARBILZE IR
FEZR 5.

TE 250 Hz 26141, Fp SR W R hdm, &INEMEREZ R e 2 . Bilinear 55 PWD 757
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BT %

TEANFRFER LM PR BB KW ERIRZE, 10%KFE% N R? 4510 0.2728 5 0.307. BEESIE A
&, AESEINE A, R T I R, 155 T W AR SR T T R T iE g LA
PRI PR A ZCRAE PR 7 4071, JUHAERS I 2% N Z 0 B FE 9 . GPR 5 RBFNN 7EH 4 RFE R %
PR ERES—E @R, BAEMCRRERZMA TR TR, ML, Frig s e 10%. 20%H1 30%
RFER AR 43 I B R?=0.8896. 0.9451 1 0.9932, HHXFi% 2% %} N A 13.82%. 9.75%F1 3.43%. 1] LLFE
o, FEHIREAE T, BT IELE A FERAE RGP R R AR e i B i e R, JUILTE 20% 2% LA FoRAE 2R
FAF AT IR . (HFEIFRE R, 75 10% KPR T, HAX R ZTRFEE 10%LL F, B854,
WA RAE S5 A, AR50 S 350 ey AR 355 225 40 R Wk SR ATI AR AE — e IR A o

£ 500 Hz ik h ~, Ao A R NG BT SRR, W EEENRERE S
FoE st T R . BARORE, S IATE B M E R A R R %, B
B RFE AT N IX — AT NI o AL G e 51k 55 T W0 S8 5 IR R 7 A 4 A4 1 T I ) S R e
L g Ak R DA R S 3 e ) I S (R R AE , RIS ™ E . REsi k. EFa
THEBL GPR J7V7E i ok AF T [FIRE 52 BIAE AR K 5 23 W) A R, 1S AR 0 M Bl R A 2R P B 2 R
Bfo 5 ZfRHASE, 500 Hz CUATLH Sk 7 3 23 MR 1 0t 5 F I G5 0 S 0 A S5 A ARRAE, X
FEAEMRISRE ) SRE R N S TR, AP T R 1000 Hz UL b, P AR OB 44 25
PN, KRR S SRR R I TR B A AR, R TEUE D BRI T, B s
T T 20 1) DR S S 1 2 DL e UM SR T, AN Sk B v PR B A B S Ry . TR, ARSI
500 Hz fE Ay m AR L, &5 SR Res S il 7 iR AE sk AF TG 00 £ Bk ik 5.

XTI RBFNN 7775, fE 250 Hz #11 500 Hz FH6 7 RAER &M T ARG A MR . XELERHT1ER
5 R B 25 7E R S A PO G SR AT SR R B S B U . ARG BRSO S N 1
HLF, RBFNN %5 55 H BB AN RS sl 2R3 LAUSCSUT i), S B0 RV SR T S A dp R e . 1%
TG e B H 35 T[] 7 e bR B0 IR 7 VEE B 2% S 1 2 A R & AR E — @ RIFR . AHELZ R, A&
SCOTVEAE B AT P A BES AR EF AR AR M B a3 . RS ERCRAE SR, H mman 1 254 1 e 5
RE 12 BIPRT, (EBEE REER IOH AT 7 37 B A s () 25 44 () 21 L /g 0 B S 1ok, a2 SRR O
SRS — S AR T IR L . XRH G ANR SRR SWE— 82, G T Sk s s
b B R KA 1 SR AN ), E A B 0 4 Y0 o3k v 00 S S0 O30 35 P P A4k o

CEEA AR S R FZM T RIS KT LR, G E 7755 2 T i A R s AL e
B R FE R =AM 46 F R PERESZR; GPR 5 RBFNN 7EH A, B KRR &M N A —E Mm%, HiE
SEPEREATR T R R R M. R, 72 4 o 500 Hz FLURFESN 10% )45 B0 BH, 7 0 EL AR s i 0
AR, FTAR R E AR AR IROR, U R AR BRI B S B — SO R, T DL SE 4
PR ISZ A5 Sy ) AN T S5 o IX — I MO T S Bt v A0S 3 B oA U 2 B B 5 s ) o0 A L
HHEEER, FHE— BT E R (A 1000 Hz K& UL E), ZEbbeok g . X — RER Ttk T
TESLPRE AT, mfE g EENARRREE SR A AR EER. BERHME, A
B R E R T ERATS, WES I @ 5 L . 10 546 B s A B AT
Wk, HHARRAEA RN AU T sk BRI R 2 A ek B, AR % ) v Bz AL AN E AL B
AR R E A B, WX —MER, ZEEME T RANMREEER S, mEEsRZ
PRfe f1e AESERR R A, 33X b Ay 3 R 2 U1 5 N A £ 75 U A B B0 S 0 AR A I T REAA B o
29; SR, TES S SHOEREE . VR ER RN, BT I G — Y BRI 58 R 3 iR B A
21, YNGR 6 P8 3 B A Rt i HE R AR, R RCRIAE, & T E g AT EE AT S
fili R FH 75 R
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W

E&WE

KA FAFRILL RPN E SCRE: Ah =76, JERENR = B B 2 E 2B, b 102600, HiH: JbRTh
HE LR SR — D H (KM202110015001); k5T BRI 2% B B s 80 O o H —— TRAIES 5 R L
RIS HOE DR R 2 A G B 4E 5 BML RE 8 F: T 7T 5 92 ik .
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