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Abstract

To address issues such as insufficient discriminative power of image features in deep clustering,
interference from complex backgrounds, and the inefficiency of optimization caused by positive-
negative coupling effects in traditional contrastive loss functions, a robust and efficient image clus-
tering method—Decoupled Contrastive Attention Clustering Network (DCACN)—is proposed. First,
a multi-crop data augmentation strategy is employed to integrate global semantic views and local
detail views, capturing multi-scale invariant features of images. Then, the Convolutional Block
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Attention Module is seamlessly integrated into the ResNet-34 backbone network, utilizing channel
and spatial attention mechanisms to guide the network in focusing on foreground subjects while
suppressing background noise. Finally, a decoupled contrastive learning module is introduced to
eliminate gradient coupling between positive and negative samples, thereby improving training ef-
ficiency. Experimental results on ImageNet-10, CIFAR-10, and STL-10 datasets demonstrate that
DCACN achieves clustering accuracies of 0.935, 0.918, and 0.876, significantly outperforming other
mainstream algorithms.
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Figure 1. Decoupling contrastive attention-based clustering network framework
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Figure 2. Residual block structure with combined CBAM
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AARPZNEE. BB HEMERERE, Y AR AEANFT S NIRRT EEE. &
SEIGE FH Y N PRS2 il & ImageNet-10. CIFAR-10 F1 STL-10. # 1 25 H 1 iX S 4 1) HARS B

Table 1. Statistical information of experimental datasets

=1 IRBEERIHER

Hte FHL FEA BB KR PR RSP
ImageNet-10 [20] 10 13,000 3 ImageNet FSR¥)1k T4
CIFAR-10 [21] 10 60,000 32 x 32 3 H Rk
STL-10[22] 10 13,000 96 x 96 3 o R H ARk

T AT R R SR A RIVERE, ARTERA T AN I AT A AR HE VPN TR SRR
% (Clustering Accuracy, ACC). #xift H.15 E (Normalized Mutual Information, NMI)F1ifE % > 4 2 % (Ad-
justed Rand Index, ARI).

(1) ACC i ELML M PERE T A%, e Ml B 1002 SR R IR B TN AE AR S B Le il o |l 10 e B SRR
fi PR A 255 5 B0 B T L SIS bR 25 2 [l 5 AN A AE B — — R OG &R, BRIAETHEE ACC 2 Hilr, &
Zi4e I & F R BER B TN AR 25 5 FUSEhR RS B IR VT RC B A o 45 @ R AR B8 N ANFEA, sk
R EN Y ={Y, Yo Yy | REEER KBRS e ={c, ¢, 0y} - ACC E XUNF:

N
Zﬂ(yi = m(ci))

ACC=max=* )
meM N

Horr, y RFEART IESARRE, ¢ SEREAR T ISR PIARES, M A2 A ml RE 10 A TR 25 72 1) 3 B SAR % 7
AV ——BRES BREEE&, m(:) R — DU R 1() ZHREREL AN ERBUE Y 1, B0 0.
() NMI & — N ETE R AR, H T 8P4 B AR B (R SR 2R 45 SR L SEARAE) 2 [H) ) L =
BFEE. NMIIRBET EAZHEAHGIRT 0, BRSO NAEUR . NMI TR AR :
2-1(y;c)
H(y)+H(c)
b, 1 (y;0) FoRESARRE Y HINARES ¢ Z MK EAEE, B 7 CRIRREE R o Jar HSrEE y 1A
SEPERIE D FREE . H (y) M H (c) 7052 HSEARRE y FIFRZE ¢ M. NMI B BA5 B H & B FR5EE47 5
—A, A AR SE AE[O, 112 1A], NMI=1 FoRRELE RS H LA 728, NMI=0 FRm#HE4a
ST
(3) ARI 2 =8 REC SO IRA . AR 7 5 1 22 SR AR AR 7 IR S 25 AN L SRR 25 v A 4 — Bt )
55. SR, ARl TEREHLRIMED N HIHIEMEA R 0, XERELEA FFEEE LT M LT A F LU
ARIEE G AR IE, ik X —in 8, (EA3REHLIEN ARI JHEE(E A 0, T 58R5EM ARI A 1.

ARI [THSRE T RIS, E (IR
2 HERC )

GG RGG)

o, g 2RI E T RS MBI j RFEASCR, a 2R T IS IREALEL by 28 T Hl
7% RIREAEE, N EHEASE. ARIZEHE 1 IETRII AR BRNS, DR SENIEIF

NMI(y,c)= (10)

ARl = (11)

DOI: 10.12677/csa.2026.162039 71 PR 55


https://doi.org/10.12677/csa.2026.162039

FAAERG WIS

Wriatr, JEHAERRI KN SRR 20, ARI AL ACC B B S I 2R 28 45 F4) 1) TS ot oo
4.2. KGLERFELSMERED T
(1) DCACN FaijE PESL 58

N T B4R FT DCACN #AL I ZiAg g PEAMRSIOE FE, A SCid s 7RI ZRd e b =M PP 4R bR

BEIEACH B AL TSI 18] 3 JEIR T =AM EESEAE 1000 4> Epoch IR A A PR RE £, Hrpartaihskk
N ACC, WtihZidrs NMI, ZR(HIZEE R ARl M 3 ATLAE HH, DCACN FIZR Il LR 51 5E
PE: YIZRPIIA(ET 200 4 Epoch), = HdE4E ACC. NMI. ARI HJH#28 7, CIFAR-10 ) ACC 7£ 150 4~
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Figure 3. Cluster results visualization of three image datasets
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P AR 1 i 4RO W B 4P I T TG . 18 4 JROR T B VISR R BOHERE, R 2 1) 43 A (13 R ik
o EVIGVIGEI B, B AR SRR E—i, FRIE AT S0 H TEF PIRTEARAS, 2 B L i 2%
A SE B B HE SRR, BEE VIZRRUIEEAT, 7T LLE BN B S PAEAS s G & SR e, R AR 2%
M I3, TERCT WP MIRREE MR . EUIZRIE 1, R SRR IR SR 1S H aa i, 2B
FEATR T B, JSIAIEE B B 25 K. 7F Epoch1000 i, 10 MNEHIFEA S CLE T 10 AN FEER 21
WSTR[

(2) HAhSEE RIS L sk

N7 B:AF DCACN HEAL (14 i, B ImageNet-10. CIFAR-10 Il STL-10 $#E 52T & I W B J sk
5, 5 R U I S 1 22 PR FE IR R EAT X L, 36 2 B B sEan 2

Table 2. Performance comparison of different clustering algorithms on ImageNet-10, CIFAR-10, and STL-10 datasets
= 2. FREIBHEEEAE ImageNet-10, CIFAR-10 #1 STL-10 ¥R & _EAYEsEXTEE

Tk ImageNet-10 CIFAR-10 STL-10
ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-Means 0.241 0.119 0.057 0.229 0.087 0.049 0.192 0.125 0.061
DEC 0.381 0.282 0.203 0.301 0.257 0.161 0.359 0.276 0.186
DCEC [20] 0.401 0.302 0.287 0.352 0.342 0.239 0.389 0.347 0.255
11C [18] - - - 0.617 0.551 0.411 0.596 0.496 0.397
PICA [23] 0.870 0.802 0.761 0.696 0.591 0.512 0.713 0.611 0.531
CC [24] 0.893 0.859 0.822 0.790 0.705 0.637 0.850 0.764 0.726
SCCMD [7] - - - 0.903 0.814 0.805 0.793 0.756 0.733

DCACN (Ours)  0.935 0.887 0.864 0.918 0.832 0.821 0.876 0.789 0.758

AfLAE tH DCACN fE&Lifabs FHE 7 REM . M T LT CC, DCACN fE
ACC LIRTF 741 12.8%, 7E ARI L32TF T 18.4%. XM 51 N FI 22 38 SEms A & LA R0k 4h 11K
Gy HE R G A R AN T R ) R, 1SS B B RE A M R P ) AR A s E R B S R
SCCMD #flt, DCACN 7 ACC L ffFF T 1.5%HI %, WAl 1 MR xT i S AL R B B TR
STL-10 B8 =i R 7 H R A0 G W35 A A8/ . DCACN fEZEE 5 EIRFER I H ¢, ACCIAH|
70876, it CC Ml SCCMD. X—&i I NEE, Uil DCACN A FREHE T B A B iR e 1
&1, CBAM {E R JJBEHAE MAL R IE T OCBAE R, MR KEFABESNEI N, KRG
H o 7 UG AR, Yok D 1 e 7 o SRS R AL T4 . ImageNet-10 [RIHE Z= (115 S 2 FE IR L 25T
APk E. DCACN 7R 4E FEUS T 0.935 Mtkmikrfi%, KM 7 PICA f1 CC. XiEM T
DCACN E AL THLae Sy FiiE CHfFRE )1 . 2880 S5Ems AR U 4 )R - RS, SR fefg 2% S B 5
A 1 JE R PE AR A AN AR M R AE R s, AT 7E [HD6T B0 S 553 2 37 S5 A AR e DR e R Ak 1) SR Sk

5. &ARIE

RS XHR L SRR AR ) 0l S5 AN R AR RCRAR B i R, B 17— ot 8 s 4 A R T BV T 0 2R
KpLs . @Bt TR T 2RI RS R R, MRS RS RN Z AR, 0
TR 2 RERFAE R 2 ST RE ) AERFIESMAS &5 H I CBAM VER b, SEEL 1 il 525 M4EfE 1 A
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