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Abstract

Crowd counting has significant applications in public safety, smart cities, and traffic management.
However, real-world crowd images present challenges such as drastic scale variations, severe oc-
clusion, and complex backgrounds, making it difficult for existing methods to balance accuracy and
efficiency. To address these challenges, this paper proposes a crowd counting network, YOLOv8n-
CCNet, based on an improved YOLOv8n architecture. This network achieves performance improve-
ments through three core innovations: First, a progressive GhostConv replacement strategy is in-
troduced into the backbone network, and a lightweight feature extraction module is designed, re-
ducing the number of parameters by 27.3% while maintaining multi-scale perception capabilities.
Second, a channel and position attention mechanism (CPAM) is incorporated into the feature fusion
layer, enhancing localization capabilities for dense small targets through local cross-channel inter-
action and orientation-aware position encoding. Finally, the WloUv3 bounding box regression loss
is adopted, and gradient characteristics are optimized through a dynamic non-monotonic focusing
mechanism to improve regression stability in occluded scenarios. To verify the effectiveness of the
proposed method, experiments were conducted on a self-made dataset of high-density, multi-scale
crowds containing 1500 images. The results show that YOLOv8n-CCNet achieves an mAP50 of 65.3%,
an mAP50:95 of 35.6%, and a recall of 56.4%. Compared with the baseline model, it demonstrates
significant improvements in both counting accuracy and inference speed, proving its effectiveness
in handling complex real-world scenarios.
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Figure 1. Overall system block diagram
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Figure 2. Comparison of mAP50, mAP50:95, and Recall curves of the model before and after the improvement
on the validation set
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Table 1. Comparison of the effects of each module in the test

F 1 BRRYRALE XL

o AR Y mAP50/% mMAP50:95/% Recall/%
YOLOVSn 63.5 34 53.4
YOLOvV8n + GhostConv 63.7 (10.2) 34.7 (10.7) 54.8 (11.4)
YOLOV8n + CPAM 63.2(10.2) 34.4 (10.4) 52.9 (10.5)
YOLOV8N + WioU 64 (10.5) 34.7 (10.7) 54.8 (11.4)
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Table 2. Ablation experiment design
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Table 3. Ablation test results
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Group mAP50/% mAP50:95/% Recall/%

Base 63.5 34 53.4
Group 1 63.7 (10.2) 34.7 (10.7) 54.8 (11.4)
Group 2 63.2 (0.3) 34.4(10.4) 52.9 (]0.5)
Group 3 64 (10.5) 347 (10.7) 54.8 (11.4)
Group 4 63.2 (10.3) 347 (10.7) 53.8 (10.4)
Group 5 64.5 (11.0) 34.8(10.8) 56.2 (12.8)
Group 6 65 (11.5) 35.3(11.3) 56.2 (12.8)
Group 7 65.3 (11.8) 35.6 (11.6) 56.4 (13.0)
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Figure 3. Visualization of experimental results: the first row displays the original YOLOv8n results, while
the second row presents the results of this experiment
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