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Abstract

Accurately segmenting glass objects in the environment is a crucial step in enhancing the perfor-
mance of visual systems such as autonomous driving and deep perception. However, the current
mainstream deep learning segmentation methods rely almost entirely on traditional perspective
images for training and inference. The limited field of view and local contextual information of
such images make them inadequate in handling glass targets with varying scales and distances
in open scenes. Although panoramic imaging provides a comprehensive and unobstructed view
of the environment, the severe deformation of glass areas due to perspective, coupled with their
inherent optical properties such as light transmission and reflection, poses an extremely com-
plex visual analysis challenge, far exceeding the challenges faced by traditional perspective im-
ages. To systematically address the aforementioned challenges, this paper proposes a novel net-
work architecture—Efficient and Integrated Panoramic Glass Precision Sorting Network. This
neural network architecture integrates advanced operations such as attention mechanisms,
transposed convolution, depthwise separable convolution, and spatial convolution, and designs
three modules: the Efficient Parallel-to-Global Deepwise Separable Module, the Efficient Trans-
posed-to-Global Dual-Stream Fusion Module, and the Efficient Parallel-to-Global Accumulative
Fusion Fine-tuning Module, for reprocessing the features extracted by the backbone network.
Our experiments on benchmark datasets such as PanoGlass V2 demonstrate that the key metrics
of this method significantly outperform existing techniques, achieving loU, MAE, and F-Score of
91.37%, 95.49%, and 0.0060, respectively. This verifies its efficiency and superior generaliza-
tion ability, providing a reliable solution for panoramic vision applications in complex scenes.
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Figure 1. Overall architecture diagram of efficient and integrated panoramic glass precision sorting network
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Figure 2. Efficient parallel volume fusion depth-separable module structure diagram
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Figure 3. Structural diagram of efficient dual-branch fusion and adjustment module for roll conversion
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Figure 4. Efficient parallel-to-serial and fine-tuning module structure diagram
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Table 1. Quantitative comparison of models on the PanoGlass V2 dataset [7]
5% 1. BIEEE PanoGlass V2 [7] E1ERIA E S LLIR

Methods Backbone IoU? Fscoret MAE| Param (M) Flops (G)
TransLab [3] ResNet50 [35] 81.81 84.75 0.0083 40.147 61.6
2 Trans2Seg [4] ResNet50 [35] 85.22 93.47 0.0067 85.01 83.59
o RGB-T [5] ResNet50 [35] 87.27 94.25 0.0071 327.72 222.29
Panoglassnet [13] MSCAN [31] 89.21 94.81 0.0063 4275 581
Vit [29] Vit [29] 57.68 73.58 0.0264 144.06 393.84
BiSeNetv2 [27] BiSeNetv2 [27] 62.45 75.89 0.2341 13.23 11.02
Mae [25] Vit [29] 65.86 81.76 0.0260 604 162
STDC [31] STDCNet [31] 75.78 86.64 0.0099 12.6 11.78
ResNeSt [21] ResNet [21] 85.21 92.89 0.0096 69.9 263.64
Fpn [24] ResNet101 [35] 85.33 91.02 0.0099 49.7 51
é Pointrend [28] ResNet101 [35] 85.54 91.29 0.0101 445 15.4
§ Segformer [23] MIT [23] 85.66 91.49 0.0098 3.72 7.89
Poolformer [26] Poolformer [26] 86.08 92.42 0.0086 15.65 30.74
Twins [32] PCPVT [32] 87.11 93.3 0.0068 132.67 282.37
CCNet [22] BiSeNetv1 [22] 87.8 93.51 0.0076 47.59 201
SegNext [34] MSCAN [34] 88.22 93.81 0.0074 27.56 32.48
Swin [30] Swin [30] 88.75 93.93 0.0070 233.85 409.53
ConvNext [33] ConvNext [33] 89.12 94.31 0.0066 80.95 257
Ours Poolformer [26] 91.37 95.49 0.0060 77.06 82.008

VE: BT 7IEEE H MMSEGMENTATION #HT T I FAEAE. 5 2 178 5 TR RI LM R, #6178 19
TREME UHBTTRME R, BRAOVRE MR EE, IS RGN AR EE, HRMER RS fEIR
HIRARAR -

Table 2. Performance of different methods on indoor panoramic image dataset

* 2. FRIFZEEZAEREGEIESR LaotaE

Methods IoU? Fscoret MAE|
TransLab [3] 82.67 85.38 0.0095
RGB-T [5] 86.32 95.02 0.0057
‘_E Trans2Seg [4] 88.47 95.55 0.0061
Panoglassnet [13] 90.02 95.77 0.0061
Vit [29] 54.77 70.17 0.0302
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BiSeNetv2 [27] 69.7 82.91 0.0205

Mae [25] 69.87 84.2 0.0192

STDC [31] 70.49 85.38 0.0171

ResNeSt [21] 74.62 88.51 0.0141

Fpn [24] 83.55 90.13 0.0091

o Pointrend [28] 83.71 90.39 0.0091

E Segformer [23] 87.02 90.55 0.0081

» Twins [32] 87.24 93.18 0.0073

CCNet [22] 875 92.99 0.0077

SegNext [34] 88.38 93.83 0.0071

Swin [30] 89.27 94.27 0.0063

ConvNext [33] 89.42 94.58 0.0063

Poolformer [26] 89.69 95.01 0.0058

Ours 91.21 95.91 0.0045
g‘fﬁ:b;ﬂ;éﬁﬁﬁ?%ft%?ﬂé?:@%&ﬁ%iﬂﬁﬁﬁﬁ, AT AR TR N R UE, R 7RO bR

URATAR

Table 3. Performance of different methods on outdoor panoramic image dataset

# 3. PRIBZAEZEIINEREGKIEE LM

Methods ToU? Fscoret MAE|

TransLab [3] 71.65 82.31 0.0005

2 RGB-T [5] 72.79 81.42 0.0005
O Trans2Seg [4] 74.97 83.41 0.0004
Panoglassnet [13] 76.21 85.49 0.0004

Vit [29] 28.52 43.92 0.0013

BiSeNetv2 [27] 33.57 50.25 0.0011

Mae [25] 34.42 58.55 0.0011

STDC [31] 35.59 56.19 0.0011

ResNeSt [21] 36.11 53.09 0.0011

Fpn [24] 52.74 65.37 0.0009

é Pointrend [28] 53.85 67.27 0.0009
§ Segformer [23] 72.91 81.25 0.0004
Twins [32] 73.75 85.47 0.0004

CCNet [22] 73.79 87.61 0.0004

SegNext [34] 74.07 87.08 0.0004

Swin [30] 74.77 86.39 0.0004

ConvNext [33] 75.66 86.41 0.0004

Poolformer [26] 77.69 87.47 0.0004

Ours 83.51 90.27 0.0003

T X TAFRTHEE RS 5 R G EERE EivkRe, BATHEAR R MR RIUE, HRRRR AR I .
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TR 5%

AT AE 5 N B E b loU IH 91.21, MAE 4 0.0045 F1 Fscore iy 95.91, 782 /M E#isE
I /9 83.51 1) loU. 0.0003 [#] MAE A1 90.27 [#] Fscore. 1% (i) SO £ 5t J& de AL )

BATVEAS 7 w1 RO fih A S BRGNS TE A RIS AP 48 B veRE . BATERE T HeTimAT A JF
Al BB ARG KPS 45, 4% GDD [8]. HSO[11]. RGB-T[5]. EAKI %, GDD [8]/Z5 AN 1A A
BN TARVEBESE, a8 2827 M KGN 1089 A& N BIMG, I H K2 B A 3 40 E R 5 Jk
FiZ¥E%E. HSO [11]% Kk EH MatterPort3D [36]. 2D3DS [37]. ScanNet [38]. Sunrgbd [39]3 € 14 (1)
9704 M Fr Bt o RGB-T [5]/2& — M T B FRF I 5 H5 5, H 5518 1~ RGB G F I ZH . FRATTHC AR
T IR TVEE A TR EIARSE B, N 4~6 Frs, IRBRANIER 5 EATHT T i,

Table 4. Performance comparison on the open glass dataset RGB-T [5]

4. EFFHCRIBHRIIES RGB-T [5] LA RELLER

Methods IoU? Fscore? MAE|
EBLNet [10] 80.22 88.31 0.113
RGB-T (only RGB) [5] 88.78 92.75 0.057
RGB-T [5] 92.97 95.32 0.028

Ours 94.88 96.99 0.021

T XA RO EdE 42 RGB-T [5] ERIVERE, FATHIBR BoR 1 iRt rEge, BATHMATRR TR
ML, FRMA T RoR R IR R AR -

Table 5. Performance comparison on the open glass dataset HSO [11]
< 5. FEARERIBEHIESE HSO [11] LRI MEREEL R

Methods IoU? Fscoret MAE|
GDNet [8] 78.25 81.42 0.098
EBLNet [10] 79.45 —_— 0.093
PGSNet [11] 80.45 83.61 0.089
GlassSegNet [12] 84.77 —_— 0.086
Ours 86.75 91.13 0.055

VE: TN FIREIAE T O EE 48 HSO [11] ERIVERE, FATHIBIRER ViR ENERE, BAVIRIA T IOR S 1R
MR, FRMA TR R R bR I AR -

Table 6. Performance comparison on the open glass dataset GDD [8]

= 6. TEFFHERIBHIESE GDD [8] LAY REELER

Methods IoU? Fscore? MAE|
RGB-T (only RGB) [5] 86.77 —_— 0.070
GDNet [8] 87.42 89.23 0.067
PGSNet [11] 87.99 90.18 0.062
EBLNet [10] 88.22 93.24 0.058
GlassSegNet [12] 90.53 —_— 0.063
Ours 91.95 94.57 0.051

T T A FERBIE T RO RE R 4L GDD [8] LRITERE, IRATHIBR EoR 7 RENERE, BAVIRIA T IOR SR
MU, FRMA T RoR R IR IR AR -
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76 RGB-T $#li 4 I, FRATHIAISZHL T 94.88%fH) loU. 0.021 f¥] MAE #1 96.99%]¥] Fscore; £ HSO
HidE b, BATFIBLEYSLIL T 86.75%( IoU. 0.055 (1) MAE 1 91.13%#] Fscore. 7 GDD #i#i4E I, &
AT RLSEZEL T 91.95 (1) loU. 0.051 ] MAE £l 94.57 1] Fscore.

SR 55 SR I FAN T I S S A AT 1) 383 O B Bl AR A B ORI, AR T AT e R 3
MR . [EIE, FATME R S E W R A T), X3RS O il 4 5B RRS 75 N 48 16 38 4 FI T
S B BB VEREOC S, DB o BSOS gk — SR T SR N AR AL 1A I SRR .

4.4. HRASCIE

Table 7. Ablation experiment
7. HRASIE

Methods loU Fscore MAE

Base 86.08 92.42 0.0086

Base + & RFFAT s B BE VT A3 B 90.56 94.76 0.0071
Base + a1 20 5 XS b i B 90.94 95.12 0.0065
Base + = 0F % B RS TR 91.09 95.76 0.0063

o RO R 4 SR RN 43 P 2% 91.37 95.49 0.0060

VE: Y RSEI 7 BIUAIE 1 R BOFAT B R R /R L TR RO NS Rl R B A R O e R BRSO VR RE L

FEAA T, FAMEZ 4 PanoGlass V2 [7] EHEATIHRRSLGS:, LAUEBEAT BT R (B e RO AT 5 R
TR BE AT 3B | e R0 2 XS R IR RO et 28O0 e R RO SRR PE B o (O Y, SEIREE ROR TR 7
FATZARAE A PUASB B b i O FAT 2 RLIR B PTR80S R A B e Bl s R e 2R Rrs
VAR, (HSEE S RIF AN NI . R ROTFAT A BlR FE T 0 LR (S RE MY 502 W DX 5 7 SR IX 0
ETCIEAN ] S SN R IR SRR, 5 S B SIS RN T R4 XU R A H T 5546
SIS, KR 2 0 4R R U AR B IE RE 7, DG TRC F1L e DX R AE 0T 55 75 oK ROF e R ARG
PR BB IE B IS, R ZXDEABEARE  R AU RE . A B =AM, &
A R ORI, — R A PISL A P e AT i 4 57 LR B0 0 B O A AR 75 K

5. &

A EETERA T (1) $2th 7 —ME i T 2R KRB BRI M 451 . (2) ASCHRH 7 =Fb
TRV RFAE AR B S5 1o O AT T AR S AT 0 B ey A A XS R VRS R AT i IO SR RS TR AR, 20331
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BENSER, L VAR M A RS S AR POt . 20K, X TE AT R N R IR . B
FATH RS AL BRLERAE ] 1 22 R AN (7] R A BT iR B B (g B AR i, (R R 25 T B S ORI 5
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