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Abstract

In recent years, Transformer-based methods have achieved significant progress in the field of monoc-
ular 3D human pose estimation, owing to their powerful self-attention mechanism that effectively cap-
ture global representations and long-range dependencies. However, most existing approaches pre-
dominantly focus on constructing global spatiotemporal dependencies, and their interaction mecha-
nisms lack explicit inductive bias toward local spatiotemporal structures, particularly the strong cor-
relations between adjacent frames. This may lead to insufficient exploitation of the close and struc-
tured temporal relationships among neighboring frames. To address this, this paper proposes a novel
attention architecture—the Neighbor Convolution Transformer (NCFormer)—which explicitly models
dependencies between neighboring frames through neighbor-frame convolution and axial multi-layer
perceptrons. Specifically, NCFormer consists of three core components: (1) A multi-head self-attention
module for capturing global spatiotemporal dependencies; (2) A neighbor convolution module, which
employs temporal convolution kernels to extract relationships among neighboring frames; and (3) An
axial multi-layer perceptron, designed to perform independent feature transformations along the tem-
poral and spatial dimensions, thereby avoiding undifferentiated mixing of cross-dimensional infor-
mation and enabling the model to focus more on learning dimension-specific patterns. Experiments
conducted on two widely used benchmark datasets for 3D human pose estimation—Human3.6M and
MPI-INF-3DHP—demonstrate that NCFormer achieves highly competitive performance across various
evaluation settings.
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Figure 1. NCFormer model architecture diagram
[ 1. NCFormer 1R 814244
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BIZHEBORITE . RS REAEEE. SR G R IE B 1.
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(R4 S AT ML (P AR AS iy b TR Rl G 2 M BN 30, 12738 i BR A R B i 2 [R] 25 M 1 S B,
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23 I PE R THL 2 Transformer IR0 AR, %4 48 2 MO KHE X e REF9C, Hrd g Mt
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Figure 2. Workflow diagram of k neighboring convolution
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3.3.3. £ NCFormer HfaE: SE/ABNNREHE

£ NCFormer ZEfrfr, MBHUSLHI AT ARMIER . St T M52 R L Lk AEE HEAHIER
MIEGVRE, 1 ST RE SRR T v S et . IR 13 NCFormer g% [ i i FH 5 Ff
SRR BEHIA Transformer 4R B R g e, N SBFINL e @B deR St . kir
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3.4. HE%ERAN

ONAE IS 2 2 P _E SRR AR AR AR 4, R IR o S A RV P TR 45 BT, BATTEih 7 — AR 2 )2
REINURLER, HEERIINIE] 3 PR AR A OB AR SE . WP N ARFAE AN 8] L 2 1) A58 T8 4 FE EAT
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Figure 3. Workflow diagram of axial MLP
3. HE % RN TIERIZE

3.4.1. HEHBTHRILE

Y 55 43 B AR ML A B ) MLP 54545 MLP (A0 X 5o LRI 5] NSRgE N9 mE, oA T
FFIEAC B RHEATER: 54 MLP {E B R EuEn g, KA AT BT ZRM; ifhm MLP @i
SXoF IR )l 5 2 TR b dE A7 2 B A 3, S i N 7 I 2 R e 5 4 43 B PR R S 0 iR . X AR A R
Sl ST AN [ 4 B s R (i 1) B fR3s s i v . A BRI SR TR AN R ), WER TE 4R S BT
P, NI 2 B AR 27 ST M

BRE, Hiia) MLP IR B0 2 B AR, 1 — M A m e s i B (i B . . &£
FER) L FIHRIE R 2 . B8 Transformer w “VERE B B &SRt ” (0 EARGI BT BRI 4%, LRl
ATETIES L FE AR, TEORFFERBZEF I R, SEOUSE R, BE G A A 50 A TR I R 4 5] o
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2) I YE LA A :
X, = Linear (X) (10)

3.4.2. FHEMES5EM
W I e AR e X o TSR REAR e X o IARENRRAE X =AM S a4 s, ik
R R AT R YE B, 76 NI AR T, Concat FRiBIELEREHHE, Linear,  FRLEPEA e, K5 4
JEE 00 B KT a 22k B K b:
Y = Linear,, . (Concat (X, X,, X)) (11)

FF MLP B3R I 7 AR OGO 34 Bl MLP (01 BT LR GBI s: ok, H4eRE i in
IS I [ 5 A (] LE B ST AR ER, B G TS AER AR BT E IR G, AT (AR R R B LT A )
BYERERF A A HUG =AM ST I T T 7R R4 (1 454 P AR A —— I 1) 20 32 T
FPalas, R SOORERTI R AR, EENSIMREEGER: fa, ZRRSEZIPHER S RAN
HAME: 25U EREEYNE TAERE, fhim MUP I TR] 7 SRES 1t — 2D 4 o B BB B A =) i
[AVRFAE, He (8] 23 SN 9 S (R 5 M IR, B TR “VE R ISR, MLP SIS 1 R
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35. HKEH

NCFormer 452K BRI L 7€ A -
L=L, +A4L +4,L, (12)

Forbr L, 9 Zhang %8 A (191 0 FITECT 495675 2R B4R 22, L, Hossain 5 A [20J3itH B Fisis 4
TIPSR B, L MPOVE $12%, A FIA R 280, P T TP & 4 2 o oot 45 S 1 B
M. L, %A T Bl R A

1 18
L\szg(WjXE;"pjj _gtj‘f"zj (13)

Hrfr FOARNMUF I, I AR, W RS A RTIIRE, WeR & MRERE,
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ok p™ L p A pHA AR R BT Sk AR MR T TR A A0 3D R o A
RS o 1T VR T 5 SO AR MR, T /3 0 P A 000 A I 22 AP A
W ARTUIFFBULERT 1) T, p A7 PR TR T Sk B AR RO 1 B 2 A O

4. S8
4.1. BiEsE AR b

BAEA BA PRERNE ) =48 MR IZZSAGTHEHER 48 Human3.6M [6]F1 MPI-INF-3DHP [7] b5 B
POTEIAT T ATV .

Human3.6M s& 1% SRR A ZAE = A B —. N5 R R FF—5[15] [16], &
I3 1K# S1. S5, S6. S7 M1 S8 #EAT YISk, FFEZIAE SO Al S11 kAT Pifli. PEREVTAS R 2 Af
FRFEAR, AFETI T R E R ZE(MPIPE) R 22 (P-MPJIPE) DL & P35 56715 RO BE R 72 (MPIVE)

MPI-INF-3DHP 2 5 —AN iz s i i e 4, e i AE TR RS = A E M50, A
STV 2R 4 E Ve RS, BRATTIEAE e il TAE R E L IR HEEAE PR [12], SR 2 R FR bR —
—A$E MPJPE. IEM{ZTT 55 H 4 LL(PCK) AT 28 T A (AUC)

4.2. #pFELET

FAIET PyTorch HEZZSZHL T Fr$ tH (1) NCFormer #74 , fii 45 525634 7 — 7K GeForce RTX 4090D GPU
FsER . RVEAG YRR RO, BATVE FH R ISR A G RS R I A% A A o DG 9] B B 4ok
HEAE NN . BV Adam TRALER[21]HE TSR, RN E Dy 1024, EFEN 0.1, KA GELU
VE NS PREL. WIUGR2E 21 3 ¥ 0.00004, FEIRIAT 0.99. #EAIILYIZE T 200 4> epochs.

4.3. Human3.6M ¥z &4

Table 1. Performance indicator comparison on Human3.6M Protocol 1 based on 2D key points from the CPN
# 1. EF CPN 2D %# &7 Human3.6M 3L 1 _E R REFEFRRTEL

H ECCV20 ICCV21 ECCV22 CVPR22 ICCV23 1IVC24

SRNET [22] PoseFormer [18] STMO [15] MHFormer [16] GLA-GCN [23] STAFormer [24] ©OU'S

pAAEEETR 46.6 415 38.9 39.2 41.3 38.0 39.5
Tk 471 44.8 42.7 43.1 443 41.8 41.7
piicy 439 39.8 40.4 40.1 40.8 395 36.6
FARWE 41.6 425 41.1 40.9 41.8 39.8 40.0
B g 458 46.5 456 44.9 459 44.8 428
EisliG! 49.6 51.6 49.7 51.2 54.1 48.9 48.3
FRE 46.5 421 40.9 40.6 42.1 39.8 41.0
T4 40.0 420 39.9 413 41.5 39.0 39.6
AR 53.4 53.3 55.5 53.5 57.8 53.7 52.2
AR R 61.1 60.7 59.4 60.3 62.9 57.2 57.9
AR 46.1 455 44.9 437 45.0 434 42.2
e 426 433 42.2 411 428 41.3 40.7
B 43.1 46.1 427 438 45.9 41.9 40.9
1T 315 318 29.4 29.8 29.4 28.6 275
JHEATE 32.6 32.2 29.4 30.6 29.9 28.7 28.3
T35 448 44.3 428 43.0 444 41.7 41.3
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FAAE Human3.6M %4 4 332 Hi i) NCFormer A2 R ik i vkt AT 7 i b, e 1 fisk 2
Fizr, BL CPN il 3 i) —4E5CH mifE v, A1 mlfEH MPIPE I P-MPJIPE 5 1Al 4 A5 Al vH4
JE. 3 NiHE—23@iE MPIVE (Mean Per Joint Velocity Error, V-5 3 8 5 15 22 ) 7 5 TN 2 25 1 i i) °F
80k

Table 2. Performance indicator comparison on Human3.6M Protocol 2 based on 2D key points from the CPN

5% 2. EF CPN 2D %8 57 Human3.6M i 2 B9 REFEFRRTEL

i ICCv21 ECCV22 PR23 ICCV23 IVC24 ours
PoseFormer [18] P-STMO [15] MHFormer++[25] GLA-GCN [23] STAFormer [24]
JifER 325 31.3 31.6 324 31.5 31.5
TR 34.8 35.2 34.8 35.3 34.7 41.7
e 32.6 32.9 32.2 32.6 32,5 36.6
AEGLS 34.6 33.9 33.2 34.2 335 32.1
WS 35.3 35.4 347 35.0 34.9 33.3
Ejshit 395 39.3 39.7 42.1 39.5 38.1
R 321 325 33.0 321 31.8 315
&%) 32.0 315 31.0 31.9 31.1 30.1
AT 32.0 44.6 435 455 43.8 42.3
AL IR 485 48.2 49.6 495 475 46.5
AR 34.8 36.3 36.1 36.1 35.8 34.3
e 32.4 32.9 32.4 32.4 32,5 31.5
gk 35.3 34.4 33.8 35.6 33.9 32,5
17k 245 23.8 23.9 235 234 22.0
JHEATE 26.0 23.9 24.7 24.7 23.9 23.2
T3 34.6 34.4 34.2 34.8 34.0 32.9

NARBEVEAG 1 T S A tE, FRADEIEH A2 KA. EP 1 GEF CPN 4
)R, NCFormer HUf5 7 & ALH) MPIPE 455, P2 41.3 mm. 7EHMY 2 (fFFAHIF CPN Gk i)
e, FRATR T FIRE SRS AR RE, SFY) P-MPJIPE 4 32.9 mm. ZEFFEMT, NCFormer 7E44K 2 (3
VES 5 S5 BUAFA  B e e R IR B, XIS AE T AR A R 450 5 JR S A A (R PR A R AT, DA
RAFHz ke

Table 3. MPJVE performance indicator comparison on Human3.6M based on 2D key points from the CPN
7 3. ET CPN 2D k%57 Human3.6M £/ MPIVE 14 &EFRFRRTLL

K ICCV21 CVPR22 CVPR22 PR23
PoseFormer [18] MHFormer [16] MixSTE [19] MHFormer++ [25]

S 2.5 2.4 2.3 2.3 2.1

Ours

EEE—3ME 7, NCFormer S2¥L 7 2.1 mm H MPIVE, & HA . X—45 8%, RITH
FFEReNE A B T AN (8] — S RIS sh R 5, MBS R EE AR BN T G R HE T AR Ak
HIfe . 28, SEIGULHT NCFormer Refg e T-uERGH —4EXUMIR & H ks E R =484S, #E—BEHET
HARRILGE S G LR
4.4. MPI-INF-3DHP ¥ &4

4 REET MPI-INF-3DHP FdiR &R sLiess /. AT 7RIS PCK 98.2. AUC75.7, MPJPE 32.8
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mm RS ERE . IX SRS AR 1 BRATT 5 V25 2 (B o7 L TNy T A e A R, AR R IR 2 R AL
ENVESRA R KMz AR JT o [EAFERME, MPI-INF-3DHP #dl fiins 11 2 = WA= S50, RAE
FAEIXMAZ %, NCFormer 45287 A5 A8 € Al e S5 B RO TN, 5% HH 17 AR TS B Al 1 B sk 5 2 P I 1 65
PRVEALE NE . RS Rt —PAESE T T J7 ik i Rk 5 Sebr B 77

Table 4. Performance comparison on MPI-INF-3DHP database
7 4. MPI-INF-3DHP B &E 1 RERTEL

- ICCVv21 CVPR22 CVPR22 PR23
T . Ours
PoseFormer [18] MHFormer [16] MixSTE [19] MHFormer++ [25]
PCK? 88.6 93.8 94.4 94.8 98.2
AUC?t 56.4 63.3 66.5 65.8 75.7
MPJPE| (mm) 77.1 58.0 54.9 54.0 328

4.5. jHRESELE

45.1. (AESH

T VAL BRATER AR R AN AR A 2, FRATTYE Human3.6M £idfa 4 kT T R 40 103 fh s i,
FFLL MPIPE 1E PN FE bR oSS0 IANEL A5 7 B g i (AR ALV E N BE 2R, 3205 TR il 416 RS Rl gl i) 22 )2
AN, 253 a5E 5 Fis.

SEIGFRB, 4L A B g VE R R, MPIPE Jy 47.2mm. 7ENNNIEAR SRS, MPIPE &
P22 42.3mm, PEREEETRTY, VW IZ AR RO ST A W] (1 JS A OC R o 2D 5] NHlia 2 2K
HMIPUBEER 5, MPIPE ik DB E 41.3 mm, 3R UIZASERE Ik X i) 2 4k B b AT MR i, b — D3 1
R 52 AR TT. 2, e (BL& T a B IS T it fg .

Table 5. Component ablation experiment
5. A iHRRIE

A BRI kIR i ZEEEHL MPIPE| (mm)  P-MPJPE| (mm)  MPJVE| (mm/s)

N x x 425 34.0 2.53
\ V x 423 335 2.25
\ x V 416 333 2.16
Ours V \ V 413 329 2.10

ERE R 7 ARG B RS ) 2 2 R EI MU SRS A R, RIS AL 1 A AR 2 K
WU I FEIVE I, SERISET T = 4E S AT RORE R S B

452. BSESH

FATAE Human3.6M ¥4 EXTATHR ik T T KA SEOH AL, Siess Rad T 6. SuiR
IR B AR EE (5 6+ 7). HRANZERE(256. 512, 640). HFZ K/ING. 7+ 9)LL A2 M NI K JiE (81, 243.
35X HERE IR . S IRK W, TREEN 6 WAL R, 0 TIRME 5 MBI SIRE 7 MR
IRNYERE R 512 IR A s, T 256 &5 640 e ; ALK/ 7 B RCR &AL, T 5 F19: 1
B NWUECR 243 BTN R ZE K, T 81 A 351 il E .

UEAh, BAVIHT T HBESEOHEI G S FE IR . Horp, RN R SRR o S E R A R i R 5

DOI: 10.12677/csa.2026.162052 210 LR 5 R


https://doi.org/10.12677/csa.2026.162052

HwmA %

R (FLOPS) M i N 2 R NLEEDR BV R U ) T 5 SR 2 BE Tt R 7 G, IR B U2 P s
RIGIREE . MR, BRUZ R INRR il ) AR T S5 R A 1) 55 a0 A RO AR SR A FE R RS AR B

BT FREER, TAWE 7RRIRRE 6. HNAERE 512, BHUZK/N 7. AW 243 A RAUESH
WAy o ZBCETEATE W IR T B ARH MPJIPE (41.3mm), RUHILAETERIY 5 4 5 5 RAERE ) 2 1A] 5281
ARCTH, N FETHE S TR HER 1 -

Table 6. Hyperparameter ablation experiment
7 6. BESEHRMEE

KB RN k Frame Parameters| (M) FLOPs| (M) MPIPE| (mm)
5 512 7 243 24.75 525.6 419
6 512 7 243 29.67 630.7 41.3
7 512 7 243 34.59 735.8 415
6 256 7 243 7.74 168.3 424
6 640 7 243 46.1 972.3 415
6 512 5 243 28.1 577.3 41.8
6 512 9 243 31.2 684.2 414
6 512 7 81 29.3 605.3 421
6 512 7 351 30.1 647.7 415

4.6. EMLER
Input PoseFormer ours Ground truth

HEEE
FEER

CHEEE
FEER

Figure 4. 3D pose reconstruction comparison (NCFormer vs. PoseFormer) on Human3.6M database
4. NCFormer 5 PoseFormer £ Human3.6M #3868 FRI =4S EENTLE
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IRAT B 2B AL SR B AE T 4R NCFormer HE R 7E = 4 A AR B A 2o, M
Human3.6M {8 I BENLIE B TREAS, K NCFormer [ = 4B &S E 45 B 5K 4 hE R MM Trans-
former J77% PoseFormer 45 R iEATXF b, RIS RIE MR B, FERTA SESHIH, NCFormer il ity =
YOG BT LSRAS o AT JABERY, A5 A AR B — Bk . ST e3P0l B DL 2 R A
CERE TR T EIEAR . R AT 45 R L W], NCFormer i A B BT A MUK # ¢ 2, LB IR T
TR IR TS B R

5. &

AT T — Rl BT AT %4 Transformer (NCFormer), FI -8 H A0S o i = 48 AR S A5t
NCFormer (A% CoAIHT7E T F I AR WU S AL . — D71, e ikl vy 35 AR S b BR A J 350030 4T o (14 B 2
FHAE, DA S 2L 5 AR — 7, il m) 22 2 BAn LT it 8] 5 2 8] 48 FE E AT iRl 2R A5,
G P A R AS B TR, NI SRR AIE () 25 A RO e T

SEUG A5 R R, NCFormer 78 &85 11K 2 5 g shi e g e 2 (R BUE 1 50K °F 45 . 46 Human3.6M
Al MPI-INF-3DHP PN 3k |, NCFormer £ MPJPE. P-MPJPE Fll MPIVE 5% /M Ci fe bR _Fik 5|
MR AR R S e Em T ILRIIRUE, FRATA T IERE S A A . B R LA R — Sk
SRIN ZHELR T

B O

PATVIE A A 70 A FFRARAD U, Kl & PoseFormer [18]HI TAE NEAIIRML T HE S %,
AHFFAE H ) Human3.6M [6]41 MPI-INF-3DHP [7]5d8 5 A s PP #R At 1 3Emtl, 76— IR Bast.

E&WE
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