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Abstract

Drivable area detection and lane line detection are two related perception tasks in autonomous
driving. Many prior works treat them as two separate problems and do not explicitly model their
shared features. In many cases, the required computation and model size exceed what typical em-
bedded platforms can supportin real time. This paper introduces the Grouped Multi-Scale Attention
Network (GMSANet), a lightweight multi-task semantic segmentation network based on an en-
hancement-calibration strategy, designed for drivable area and lane line detection. The model is
built upon the GSConv-ESP (Grouped Shuffle Convolution-Efficient Spatial Pyramid) encoder and
uses an enhancement-calibration design, which reduces model complexity while preserving high
segmentation accuracy. We integrate a Grouped Multi-Scale Attention (GMSA) module into the net-
work. GMSA applies grouped strip convolutions at multiple scales, which increases the sensitivity
to directional features and key regions. Also, we introduce a Multi-scale Dynamic Rectangular Self-
Calibration Module (MD-RCM) that calibrates target regions by adjusting receptive fields across
multiple scales. Experimental results on the BDD100K dataset show that GMSANet, with only 2.9 M
parameters and 6.45 G FLOPs, achieves 92.8% mloU for drivable area segmentation, 85.1% LaneAc-
curacy, and 34.0% LaneloU, outperforming lightweight models such as YOLOP and A-YOLOM. The
model further achieves an inference speed of 55 FPS, demonstrating strong real-time capability and
suitability for embedded deployment.
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Figure 1. Overall architecture of GMSANet model
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Figure 2. Architecture of the GSConv-ESP module
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Figure 3. Encoder architecture
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Figure 4. Architecture of the GMSA module
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Figure 5. Architecture of the MD-RCM module
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Table 1. Results of different models on the BDD100K dataset
# 1. TEHER7 BDD100K HiiEsERIER

MODEL Drivable Area mloU (%) Lane Accuracy (%) Lane loU (%) FLOPS (G) Param (M)
YOLOP [12] 91.6 70.5 26.5 8.11 5.53
YOLOPV2 [13] 93.2 87.31 27.25 70.9 38.9
A-YOLOM (s) [14] 91.0 84.9 28.8 19.47 13.61
IALaneNet (ConvNeXt-tiny) [15] 91.29 - 31.48 96.52 18.35
TwinLiteNetPlus [25] 92.9 81.9 34.2 17.58 1.94
DeepLabV3+ [26] 90.9 - 29.8 30.7 15.4
SegFormer [27] 92.3 - 31.7 12.1 7.2
PDPMamba [28] 92.8 89.2 21.6
U-MobileViT [29] 92.4 79.7 325 3.47 2.25
GDMNet [30] 92.2 75.3 26.4
GMSANET (ours) 92.8 85.1 34.0 6.45 2.9

FE AT AT Bk DX IR I 7 1T, A HA ) GMSANet HUfS 1 92.8% 1) mloU, %44 P A2 T+ YOLOP. SegFormer
H1 DeepLabV3+55 F: it Ji ik, AUHEAK T YOLOPV2., AHERT45 R & s B i H P85 B A2, GMSANet 7
ZHEAH 2.9 M. FLOPs 4 6.45 G & TR IR FFELIEVERE, AT T RIFMBR BB SHEBRE
M A Gl AT AT 5 v, BEAUAE Lane loU $R R XA 34.0%, f1LT- YOLOP. YOLOV8 (multi). SegFormer
SEJTE, RUIBERILE ZE 18 2R T e 6 5 S5 M i S i A T B A B RE /) - 1F Lane Accuracy fR¥5 b, #
AL F) 85.1%, BARF AL THAL KT, 5 A-YOLOM ()L, HEBSMKT YOLOPv2, {HH]EALF YOLOP
A1 TwinLiteNetPlus. £5& K&, GMSANet 7E 1] 17 4 X 45 5 Z2 38 e B AT 5% 39045 1 BN 41T ) 1 e
B, FEORFFBARSHORBAN T S 2 2% BE R RIS, SIRBL 7 06 DX H bR 5 450 ) H AR G 20K A, B0E T
TG ALE 2R 72 B 37 b 1) S8 VS )

4.2. ATIILEGR

AT TR H 1) GMSA 18 5 Z R AR J7 v (1) T 45 SRAEAT T 0T b, DAPE Al AR 28 7 S B 2
st PRI, K 6 BR TR FEBAMEE R, WA ZAKICNEAE(GT). GMSA. YOLOP,
YOLOPV2. A-YOLOM L\ K TwinLiteNetPlus. 7EIERZ&MF T, GMSA AL AR T8 25 5 ] AT 3 X ek 43 H1
FIUTE N, T 45 R FE . ST 2T, YOLOP 5 A-YOLOM 734y X 38 5t B 2%
BRI B mEE; YOLOPV2 B H&RUF M ZRIB LR, (HIE R 4437 5 P 715 B 2 sUE B 4 1E 46 il
Ml; TwinLiteNetPlus BEBLAF PRFFREREE R, (RTEIL FEIX SAFAE — @ ORI R SR 3 AN TR SR R . kT 5
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Figure 6. Visual comparison of results on a sunny day of different models
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Figure 7. Visual comparison of results at night of different models
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Figure 8. Heatmap visualization for drivable area detection
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Figure 9. Heatmap visualization for lane line detection
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Table 2. Module ablation experiment results
2. RRHM K RER

MODEL Drivable Area mloU (%) Lane Accuracy (%) Lane loU (%)
YOLOP 91.6 705 26.5
A-YOLOM (s) 91.0 84.9 28.8
LR Y 90.7 83.3 31.2
AR + MD-RCM 92.2 84.3 325
HAER + GMSA 91.9 84.6 33.1
FEARE + MD-RCM + GMSA 92.8 85.1 34.0
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Table 3. Comparison results between single-task and multi-task models
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Figure 10. Comparison of heatmaps between the multi-task model and the single-task model
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Table 4. Comparison of models with different task weights
=4 TEEMRERT

AT X i;ﬂ $$ LR AT Drivable Area mloU (%) Lane Accuracy (%) Lane loU (%)
1:2 924 85.7 34.2
11 92.8 85.1 34.0
2:1 93.0 83.9 32.8
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