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Abstract

Early identification of depression is crucial for effective intervention, with current primary
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challenges being the extraction of deep audio features and long-range dependent text features,
along with enhancing modal coupling capability through feature fusion. An end-to-end depression
recognition model was established based on deep learning and multimodal data: the VGGish-
NetVLAD-GRU model was employed to extract deep temporal audio features; the RoB-ERTa-BiLSTM
model captured long-range semantic dependencies in text; dynamic weight allocation and cross-
modal semantic alighment of speech-text features were achieved through parametric cross-atten-
tion fusion; the Fuzzy C-means (FCM) clustering algorithm was introduced to perform soft partition-
ing of samples with similar emotional characteristics based on probabilistic membership, thereby
enabling depression classification. Experimental results demonstrated that the model achieved ac-
curacies of 97.0% and 94.0% on the EATD-Corpus and CMDC Chinese datasets, respectively, with
corresponding F1 scores of 97.0% and 94.0%. Ablation studies on the EATD-Corpus dataset showed
that the absence of cross-attention led to a 13% decrease in accuracy, while the absence of FCM
resulted in a 7% reduction in accuracy.
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Figure 1. Multimodal depression detection framework diagram
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Table 1. Four-class sample composition of the dataset
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Figure 2. The feature distribution before and after applying SMOTE on the EATD-Corpus dataset
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Figure 3. The feature distribution before and after applying SMOTE on the CMDC dataset
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Table 2. Hybrid model parameter configuration
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num_clusters: 10
VGGish-NetVLAD-GRU GRU hidden: 512
Layers: 1

Dropout: 0.2
Input:768
Hidden: 256

RoBERTa-BiLSTM Layers: 1
Dropout: 0.3

Bidirectional: True
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Figure 4. Five-fold cross-validation on the EATD dataset
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Figure 6. Sample distribution plot based on text modality
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Figure 8. Sample distribution plot based on audio-text bimodal
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Table 3. Fuzzy c-means clustering algorithm parameter configuration
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Figure 9. EATD-Corpus dataset: FCM algorithm hyperparameter optimization
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Figure 10. Distribution of clusters and classification of sample points in the first cluster
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Table 4. Experimental results of different modalities on the EATD-Corpus dataset
%< 4. EATD-Corpus HIBEM A EIRASILINER

. e RWE  BEE LA
SVM 0.54 0.41 0.46
RF 0.48 0.53 0.50
A DT 0.47 0.44 0.45
BiLSTM 0.44 0.56 0.49
VGGish-NetVLAD-GRU 0.94 0.94 0.94
SVM 0.48 1.00 0.64
RF 0.61 0.53 0.57
BiLSTM 0.53 0.63 0.57
T BERT 0.78 0.51 0.61
RoBERTa 0.96 0.51 0.66
RoBERTa-BiLSTM 0.96 0.96 0.96
GRU/BILSTM 0.85 0.84 0.71
At B E R AR 0.97 0.97 0.97
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Table 5. Experimental results of different modalities on the CMDC dataset

% 5. CMDC HiRENTRIBA LR

B B HERR yEJ iz F1734r
SVM 0.58 0.42 0.46
RF 0.58 0.89 0.50
A BiLSTM 0.57 0.80 0.49
VGGish-NetVLAD-GRU 0.76 0.76 0.76
SVM 0.48 1.00 0.53
BiLSTM 0.53 0.63 0.67
T BERT 0.78 0.61 0.71
RoBERTa 0.76 0.61 0.66
RoBERTa-BiLSTM 0.80 0.80 0.80

DOI: 10.12677/csa.2026.162066 377 PR 55


https://doi.org/10.12677/csa.2026.162066

BiLSTM [10] 0.91 0.89 0.91
AN SR AHEE 0.94 0.94 0.94

A+T

% 5 NS BASE CMDC HdR & EISEIR g R, fEEHEA T, VGGish-NetVLAD-GRU AL F1 15
5riE# 0.76, LT SVM M RF AL 41777k fE AT, RoBERTa-BILSTM ) F1 15437y 0.80, LT
BERT 5 BILSTM SFIEZR IR, 7R M0 - SCARREA T, SCHR[10142 H I AL/E CMDC L) F1 350
0.91, ASCIEH AL GHEADEHER R . H IR FL A58 2 0.94, UIITEREAR R /D HA 5 A A
P H) CMDC $dl £ b, RSO EMKIR RE 8 R $ 1 DU 29 S8 AF 55 B B AR 1 R

2 JEROCHIZE
1.01
0.81 l
0.6
=
=
0.4
0.2 0-FEMHR (AUC—0.95)
1-2E (AUC=1.00)
—— 2-FF (AUC=0.98)
0.01 * — 3 (AUC=0.97)
0.0 0.2 0.8 1.0

0.4 0.6
EnRIES

Figure 11. Multi-class ROC curve of the CMDC dataset
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4.5. jHRESELE

Table 6. Results of the ablation experiment on the EATD-Corpus dataset
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