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摘  要 

为解决非正交多址接入(Non-Orthogonal Multiple Access, NOMA)系统中的用户分组问题，提升系统吞

吐量与用户公平性，本研究提出了一种基于K均值聚类算法(K-Means Algorithm, KMA)的用户分组方法。

该方法以用户的信道增益及其对数信道增益作为聚类特征，旨在构建组内信道差异显著的用户分组，以

优化NOMA的功率分配与干扰管理，并与分数功率分配(Fractional Transmit Power Allocation, FTPA)
算法相结合。为评估所提算法性能，将其与基于信道差异的分组、基于距离的分组及随机分组等方法进

行了对比分析，对比指标包括系统吞吐量、用户公平性、算法运行时间及用户速率分布。仿真结果表明，

基于K-means的分组策略在系统吞吐量与用户公平性之间取得了更优的平衡，其性能显著优于随机分组

和基于距离的分组方法，同时与基于信道差异的分组方法相比展现了可比或更优的综合性能。此外，可

视化结果清晰展示了K-means算法依据信道特性所形成的用户聚类分布。该研究为NOMA系统中高效的

用户分组提供了一种有效的解决方案。 
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Abstract 
To address the user grouping problem in Non-Orthogonal Multiple Access (NOMA) systems and im-
prove system throughput and user fairness, this study proposes a user grouping method based on 
the K-Means Algorithm (KMA). The method takes users’ channel gains and their logarithmic channel 
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gains as clustering features, aiming to construct user groups with significant intra-group channel 
differences to optimize power allocation and interference management in NOMA, in combination 
with the Fractional Transmit Power Allocation (FTPA) algorithm. To evaluate the performance of 
the proposed algorithm, it is compared with grouping methods based on channel differences, dis-
tance-based grouping, and random grouping. Comparative metrics include system throughput, user 
fairness, algorithm runtime, and user rate distribution. Simulation results show that the K-means-
based grouping strategy achieves a better balance between system throughput and user fairness, 
significantly outperforming random grouping and distance-based grouping methods, while demon-
strating comparable or superior overall performance compared to channel-difference-based group-
ing. Furthermore, visualization results clearly illustrate the user clustering distribution formed by 
the K-means algorithm based on channel characteristics. This study provides an effective solution 
for efficient user grouping in NOMA systems. 
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Allocation 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 引言 

非正交多址接入(Non-Orthogonal Multiple Access, NOMA)技术作为未来无线通信网络的关键候选技

术，通过允许不同用户在相同的时频资源块上共享频谱，并在功率域进行叠加编码，从而显著提升了系

统的频谱效率和连接容量[1]。与正交多址接入(Orthogonal Multiple Access, OMA)技术相比，NOMA 通过

在接收端采用连续干扰消除(Successive Interference Cancellation, SIC)技术来实现多用户信号的分离，为实

现海量连接和超高吞吐量的通信场景提供了有效的解决方案[2]。近年来，随着对 NOMA 理论研究的深

入，其应用潜力不断被发掘，已成为提升无线网络性能的核心技术之一。 
K 均值聚类算法(K-Means Algorithm, KMA)作为一种经典的无监督机器学习方法，因其原理简单、计

算高效且易于实现，被广泛应用于数据挖掘、模式识别和图像处理等诸多领域[3]。该算法通过迭代计算，

能够自动将数据点划分为多个簇，使得同一簇内的数据点具有较高的相似性，而不同簇间的数据点差异

较大。随着机器学习在通信领域的渗透，K-means 算法为解决复杂的无线资源管理问题，如用户分组、基

站聚类和网络部署等，提供了新的数据驱动思路。 
然而，在 NOMA 系统的实际部署中，一个核心且具有挑战性的问题是如何对用户进行高效合理的分

组。用户分组的质量直接决定了 SIC 技术的解码成功率，进而对系统的整体吞吐量和用户公平性产生决

定性影响[4]。传统的分组策略，如基于信道差异的穷举搜索，虽能获得近似最优解，但其计算复杂度随

用户数增长而急剧上升，难以满足实时性要求；而随机分组或基于地理距离的简单策略虽复杂度低，但

性能往往不稳定且次优。因此，亟需一种既能保证优异性能又能维持较低计算复杂度的智能分组方法。

在此背景下，K-means 聚类算法的优势得以凸显：它能够自动地依据多维信道特征，同时利用信道增益

及对数信道增益将用户划分为若干簇，随后，通过簇间配对将来自不同簇的用户分配到同一 NOMA 组，

使组内用户具有显著的信道差异，这有利于 SIC 操作，同时其算法复杂度相对可控，为在动态无线环境

中实现实时、智能的用户分组提供了一种极具吸引力的解决方案。 
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国内外学者针对 NOMA 用户分组问题已展开大量研究，其中 K-means 聚类因其低复杂度与可扩展

性成为近期关注焦点。Al-Imari 等[5]早期工作将 K-means 引入单小区下行 NOMA，以归一化信道方向为

特征完成一次性分簇，并给出闭式功率分配，仿真验证了该方案在总速率上优于随机分组，但需预设簇

数且对初始质心敏感。为进一步提升鲁棒性，文献[6]提出在线 K-means 变体，在毫米波频段 imperfect CSI
条件下动态更新簇心，与穷举搜索相比可将用户和速率损失控制在 3%以内，同时也可以降低复杂度，适

用于高移动性场景。在异构网络中，文献[7]将增强 K-means 与交替方向乘子法联合优化，以能效为目标

对太赫兹室内 MISO-NOMA 进行用户分簇与功率分配，仿真表明该框架在相同发射功率下较传统 OMA
提升能量效率约 18%，为高频段 NOMA 提供了低功耗范例。此外，文献[8]在 UAV 辅助蜂窝卸载场景

中，将 K-means 作为外层聚类模块，与多智能体深度强化学习协同优化三维轨迹与功率，结果显示所提

方案较固定簇方法在收敛速度上提升 20%，且可有效支持簇内用户动态加入或离开。上述研究共同表明，

K-means 已不再仅是简单的分组工具，而是能与功率分配、用户分组及学习算法深度融合，为 NOMA 系

统提供低复杂度、高可扩展的用户分组与资源联合优化框架。 

2. 传统用户分组方法介绍 

2.1. 基于信道差异的用户分组 

传统方法首先将各用户的瞬时信道增益按降序排列，得到有序序列；随后计算相邻增益差值，并在

差值最大的前 K − 1 处插入分组边界，使每组内最强与最弱用户的信道差异最大化，以减小串行干扰消

除的误差传播[9]，如图 1 所示。该过程仅涉及一次排序与差值比较，实现简单，但阈值依赖经验设定，

且当信道分布出现平台区时易产生规模悬殊的群组，难以兼顾吞吐量与公平性[10]。 
 

 
Figure 1. Channel difference grouping procedure 
图 1. 信道差异分组流程 

2.2. 基于距离的用户分组 

基于距离的用户分组以用户间的欧氏距离为度量，首先测量各用户终端的坐标，随后按距离升序排

列并将相邻用户划入同一簇，使簇内平均距离最小化，从而降低后续功率分配的耦合度。文献[11]提出固
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定阈值法，将距离小于 thd 的用户先行成簇，再以簇为单位进行 NOMA 配对。基于距离的用户分组是一

种通过对用户间相似性进行量化度量，并依据特定距离准则将相似用户划分到同一组的技术方法。这种

方法的核心在于如何准确定义和计算用户之间的距离，从而揭示用户之间的内在关联和共性特征。常用

的度量方法为欧氏距离度量，如下式所示： 

( ) ( )2 2
12 1 2 1 2u u u ud x x y y= − + −                               (1) 

其中， 12d 表示小区内用户 1 与用户 2 之间的距离，用户 1 的坐标为( 1ux , 1uy )，用户 2 的坐标为( 2ux , 

2uy )。 

2.3. 随机用户分组 

随机用户分组是一种零信息快速分簇机制，基站既不采集瞬时信道增益，也不测量用户位置或业务

需求，通过随机映射方式，将待服务用户直接划分为若干簇，簇内用户再随机配对并共享同一时频资源

块。由于完全不依赖瞬时测量，算法复杂度较低，可快速完成分组，但通常会牺牲通信系统的吞吐量和

公平性。 

3. 基于 K-Means 算法的用户分组 

在 NOMA 下行链路中，用户分组是影响系统性能的关键环节。一个高效的分组策略旨在使得组内用

户间的信道增益差异足够显著，以便利用功率域复用，同时组间干扰尽可能小。传统的分组策略虽能获

得近似最优解，但其计算复杂度随用户数增长而呈指数级上升，难以适用于大规模网络。基于距离或随

机分组的方法虽复杂度低，但性能往往不稳定。 
为解决这一矛盾，本章引入一种基于 K-means 聚类的无监督机器学习算法。该算法能够依据用户信

道特性的相似性进行自动分组，其计算复杂度相对可控，为在动态变化的无线环境中实现实时、智能的

用户分组提供了一种极具吸引力的解决方案。K-means 是一种经典的无监督聚类算法，其核心思想是将

数据集划分为 K 个簇，使得同一簇内的数据点彼此相似，而不同簇间的数据点尽可能不同。算法的数学

目标是最小化簇内平方和(Within-Cluster Sum of Square, WCSS)，即最小化每个数据点到其所属簇中心的

欧氏距离的平方和。其目标函数可表示为： 

2

1 i

K

i
i x C

J x µ
= ∈

= −∑ ∑                                    (2) 

其中，K 是预定义的簇数量， iC 表示第 i 个簇， x 是数据点向量， iµ 是第 i 个簇的质心。本研究选取信道

增益和对数信道增益两个特征构建每个用户的特征向量 nx ，则特征向量可以表达为下式： 

( )2 2, log10n n nx h h =   
                                 (3) 

其中，
2

nh 表示用户信道增益的线性值，这是衡量用户信道质量最直接的指标。 ( )2log10 nh 就是对信道

增益取对数。采用对数变换的主要作用在于将信道增益的量级差异压缩到可控范围，使线性值与对数值

形成多维特征，有助于 K-means 算法更有效地捕捉用户之间的差异。在欧氏距离计算中，两者结合能够

更好地区分用户间的信道差异。可见，当信道增益差距较大时，对数部分也会产生显著差异，从而增加

了总体距离。此外，由于信道增益和对数信道增益两个特征值的量级不同，我们对其进行了标准化处理，

例如将特征进行零均值、单位方差归一化，以避免尺度差异影响聚类效果。 
基于 K-means 聚类算法的 NOMA 用户分组方法遵循一个系统化的迭代优化流程，其完整过程可详细

描述如下，算法初始化阶段首先需要输入系统中所有用户的信道增益数据，并对其进行特征处理，将每个
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用户的信道特性转化为包含线性尺度信道增益值及其对应对数转换值的二维特征向量，这一双重特征设计

能够同时捕捉信道的绝对强度信息和相对比例关系，为后续的聚类分析奠定数据基础。在特征准备完成后，

算法根据预设的用户组数量 K 采用随机抽样方式从特征空间中选择 K 个初始质心作为各组的初始中心点。 
随后算法进入核心的迭代优化循环，每一次迭代都包含两个关键阶段，首先在簇分配阶段，算法计

算特征空间中每一个用户点到各个质心的欧氏距离，依据最近邻原则将每个用户划分到距离最近的质心

所对应的用户组中，这个分配过程确保了组内用户具有较高的信道特性相似性；紧接着在质心更新阶段，

算法基于当前的用户分组结果，重新计算每个组的质心位置，新的质心由其所属组内所有用户特征向量

的算术平均值确定，这一更新过程使质心向组的中心位置移动。 
这样的迭代过程循环进行，每次迭代都会产生更合理的用户分组和更准确的质心位置，直到满足预

先设定的收敛条件，此时算法认为已经找到了最优的组划分方案。迭代终止后，算法还会执行必要的后

处理操作，包括检测是否存在未分配任何用户的空组，并通过从规模最大的组中迁移合适用户的方式来

消除空组，确保每个组都包含有效用户。在完成聚类分组后，为保证 NOMA 组内用户的信道差异性，我

们采用簇间配对的方法，将每个簇作为一个用户池，从不同簇中选取用户组合成 NOMA 组。具体而言，

如果聚类数等于每组用户数，可以通过从每个簇中各选择一名用户来构建每个 NOMA 组。这样，每个组

内的用户信道条件来自不同簇，显著提高了组内的信道差异性。最终，算法输出稳定可靠的用户分组方

案，为后续的 NOMA 功率分配提供优化基础。算法流程如下图 2 所示。 
 

 
Figure 2. NOMA user grouping algorithm based on K-Means 
图 2. 基于 K-Means 的 NOMA 用户分组算法 
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4. 实验结果与分析 

4.1. 实验数据设置 

在本文中，采用了基于 K-Means 算法的 NOMA 用户分组方案，具体的仿真参数如下表 1 所示： 
 
Table 1. Simulation parameters of user grouping based on K-Means algorithm 
表 1. 基于 K-Means 算法的用户分组仿真参数表 

参数 含义 取值 

N 总用户数 50 

S 每组用户数 5 

Ptotal 总功率 1 W 

Episode 仿真次数 100 

B 系统带宽 1 MHz 

ς  噪声功率谱密度 −174 dBm/Hz 

ε  接收机噪声指数 9 dB 

,R M  K-means 参数 5100 

4.2. 数据结果与分析 

 
Figure 3. K-means user grouping based on channel gain and corresponding location distribution 
图 3. 用户位置分布与 K-means 信道增益分组结果 
 

图 3 展示了用户位置分布与基于 K-means 的信道增益聚类结果。从图中可以清晰看出，用户设备在

覆盖区域内的分布具有一定的空间聚集特性，通过 K-means 算法对信道增益进行聚类后，形成了多个明

显的簇群，表明聚类算法能够有效识别出信道条件相近的用户组。该聚类方法在用户分组方面表现出良

好的性能，能够依据信道增益的空间相关性将用户划分为若干类别，有利于后续资源调度与多用户传输
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策略的优化。此外，图中用户位置的分布与信道增益的聚类结果呈现较高的一致性，说明信道增益具有

较强的空间依赖性，进一步验证了采用位置辅助的信道增益分组的合理性。该方法可为系统级的用户分

组与资源分配提供有效支撑，提升网络整体性能。 
图 4 展示了不同用户分组策略下系统吞吐量随仿真迭代次数的变化对比。从图中可以清晰地观察到，

本文所提算法如图中粉红色曲线所示，始终显著优于其他方案，实现了最高的系统吞吐量，充分验证了

其核心优势。各算法的性能层次分明，所提方法性能最优，其次为基于距离的用户分组方案，再次是基

于信道差异的分组方法；而随机分组策略的性能最低，这与理论预期完全一致。该排序结果证明，所提

方法通过更合理的聚类与资源分配机制，能更充分地挖掘系统容量潜力。尽管曲线在迭代过程中存在预

期内的波动，但所提算法整体上展现出强劲的性能提升和良好的收敛趋势，其吞吐量增益在整个迭代过

程中均保持领先。该结果有力地表明，所提策略具有重要的研究价值。 
 

 
Figure 4. System throughput as a function of iteration number 
图 4. 系统吞吐量随迭代次数的变化 
 

 
Figure 5. User rate and CDF distribution  
图 5. 用户速率与 CDF 分布图 
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图 5 展示了不同用户分组策略下的用户速率累积分布函数对比。可以明显看出，基于 K-means 聚类

算法的分组方案在整个速率区间内均优于其他方法，其 CDF 曲线整体靠右，表明用户享有更高的传输速

率。这一结果与图 4 中所呈现的系统高吞吐量性能高度一致，再次验证了 K-means 分组策略在提升系统

整体与个体性能方面的双重优势。具体而言，在任意相同用户百分比下，所提算法对应的用户速率值最

高；反之，在任一速率阈值上，该算法能服务更多的用户，显著改善了用户体验。K-means 分组表现最

佳，其后依次是基于距离的分组、基于信道差异的分组，而随机分组性能最弱。该对比充分证明了所提

方法的有效性和优越性。 
 

 
Figure 6. User fairness as a function of iteration number 
图 6. 用户公平性随迭代次数的变化 

 

 
Figure 7. User grouping algorithm runtime comparison 
图 7. 用户分组算法运行时间对比 
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图 6 展示了不同用户分组策略下系统公平性随仿真迭代次数的变化。从公平性角度分析，基于信道

差异的分组方式在本指标上表现最佳，其后依次为随机分组、本文所提 K-means 分组及基于距离的分组。

该结果与前述吞吐量及用户速率结论形成鲜明对比，表明所提 K-means 分组策略在显著提升系统容量和

用户速率的同时，在公平性方面做出了合理权衡。这种性能差异主要源于不同算法的设计目标：信道差

异分组以均衡用户信道条件为首要目标，故在公平性指标上自然占优；而 K-means 方法以提高系统整体

吞吐量为优化方向，其分组策略更倾向于优先保障信道条件优越用户的传输效率，从而导致公平性指标

相对较低。公平性与系统吞吐量之间存在固有的折中关系。本文所提方法侧重于挖掘系统容量潜力，其

公平性表现虽非最优，但仍优于基于距离的分组方案，整体上实现了系统综合性能的有效提升。 
图 7 对比了不同用户分组算法的运行时间。从计算结果来看，本文所采用的 K-means 聚类算法的运

行时间高于计算复杂度较低的随机分组与基于距离的分组方案，但显著低于基于信道差异的分组方法。

运行时间的差异直接反映了各算法在计算复杂度与性能之间的权衡。随机分组与基于距离的分组虽然计

算速度最快，但其在系统吞吐量和用户速率方面的性能较差如图 4、图 5 所示。本文所提的 K-means 算

法通过适中的计算开销，换取了系统吞吐量和用户速率的显著提升，实现了性能与复杂度之间的良好平

衡。值得注意的是，基于信道差异的分组方案虽然获得了最佳的公平性如图 6，但其计算复杂度最高，运

行时间最长。相比之下，本算法以远低于其他方案的计算耗时，获得了综合更优的性能表现，体现了更

高的实用性和算法效率。 

5. 结语 

本研究针对 NOMA 系统中的用户分组问题，提出了一种基于 K-means 聚类算法的智能分组方案。该

方案以用户的信道增益及其对数变换作为聚类特征，通过无监督学习自动将用户划分为信道特性差异显

著的组，并与 FTPA 功率分配算法相结合，实现了系统性能的有效提升。通过系统性的仿真实验与多维

度的性能对比，验证了所提算法在系统吞吐量与用户平均速率方面的显著优势。尽管在用户公平性指标

上并非最优，但其展现出的性能是对“吞吐量–公平性”这一经典权衡关系的合理实践，且整体综合性

能优于传统的基于距离分组和随机分组方法。同时，该算法以适中的计算复杂度，取得了远优于穷举搜

索方法的实际可行性，为 NOMA 系统在实际动态环境中的高效资源管理提供了兼具性能与复杂度的实用

化解决方案。 
未来的研究工作可集中于引入多目标优化框架，通过动态权重调节进一步平衡吞吐量与公平性；同

时，可探索与深度强化学习等先进算法相结合，增强分组策略在超密集网络、高移动性等复杂场景下的

自适应性与鲁棒性。 
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