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Abstract

Parameter transmission and model training in federated learning face the dual threats of poisoning
attacks and privacy leakage. Existing privacy-preserving and anti-poisoning federated learning
studies typically encrypt or perturb client gradients prior to ciphertext-domain attack detection,
which obscures distinctive malicious gradient characteristics and hinders accurate poisoning at-
tack distinction. A method is proposed that identifies client types via plaintext-based gradient his-
tory and applies privacy protection and secure aggregation exclusively to filtered legitimate clients,
thereby enhancing detection effectiveness while maintaining data confidentiality. Considering the
prevalence of sign flipping, noise injection, and label flipping attacks, along with significant differ-
ences in objectives, intensity, and behavioral patterns, short- and long-term local gradient history
is incorporated. Analyzing anomalous differences across gradient histories enables effective detec-
tion of multiple poisoning attack types. A periodic poisoning attack detection strategy is designed
to ensure client privacy. Furthermore, addressing the fixed chain count and clients in multi-chain
aggregation, an adaptive multi-chain secure aggregation method is developed to enhance adapta-
bility to dynamic client set changes, improving aggregation efficiency while preserving privacy. Ex-
perimental results on the MNIST, Fashion-MNIST, and CIFAR10 datasets demonstrate that the pro-
posed algorithm achieves an average accuracy of 85.18%, an improvement of approximately 6%
over baseline algorithms. The method exhibits robust detection capabilities for multiple poisoning
attacks, effectively enhancing model performance and meeting defense requirements in complex
attack scenarios.
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BE, WIS L 00 AR AU EEAT T Ao RIS 1] R S e e o 2 e 5 U -
5 H (V") FoR% P 3 ¢ BB K B BURTRR ML VI FUR% 3 ¢ BRI K DI s, vVie® Fm
NI A RS . Sk Ve IR [ A ¢ b T 517 S F R (B).

t-1
ViIHOG — th'i (5)
t=1

AR P ¢ 5 2 AR S A I AR EAR LW 2 3(6), WIS HARIC PR B B e Bt -
A, (H (ViIHoG )’VlHoG ) < d¢ (6)

base
Her 50 B d, 298 K TR BT 9% BT PR A 52 A (BURE 1 i
4.2. PP-MPAD HhIBEFARIF TS 35

A BRARY T IE TR, BT RSN 1 7 i N A 2 ik FR A A, o DASE 5B R G i RO &
BT 20 RAR T B MR, SN B B e . B A TR 2 e 2 i
BT VAN T B E MG AR T 5 [22], PP-MPAD 42t H & I 2 85 2 & R A A SO IR 25w ARG 7%
o 1 [ 5 R R P % i, S SR B A S s A

PP-MPAD H I BAA DR 7775 2 BRI S B 2 5 % 7 it B R Bl A R B B I 0, AT IR &5 3R E &
Pt B R A RACI T R 2 B R A IR TR A R . MBI P AT SR R T SR, %
% P o (S T AR R & [ S T B TERRE B L 5, IR AL DM R KG FT IE 8 % 7 i B AL
R 5 B P AT PORE R G LU AR R B I (7 P R AR 2 o RREEE v ANEAE 1A TR U IR
FPUREEN n, MR IBERAD/NTRE g B, AR KR TR G RN, SRS R R A
L, rH& 7 R (7)) Fros

{l, if n<q
L = )

max(ztx/ﬁj) ifn>q

BIME o HT X 5 28k, %0 P i B B (0 3 A% i) >R i LR T4, %0
MR L, RASDHE 2 48, HREANE Jn &8, GRS TR REWCR. @ik
AT E A NAT B0 A B A RO AR A R e, RERBE P IR P i AT RE A R . RS AR AL
ONBEALAE s A2 i — A S 1A FELEFE — BURBEAL I EAE U WIATERD,  TF 4 Hb Ry & R IE 28 % 2R BE A
A e AR P IR T, KRS B S ARG B RN, TR RN R BB S
I A ORI AR 2 R — N P . BE B IR AR UCRE B BB SO E R R, AT
PR INAE M . IR Z, MR — R ks R NE RUR B SS 4% PrA SEFAT T Lidid
R, L rp RS BERE b BT 20 02 i ) 2l i e 0 st B 5 92555 SCHR 220410 [ o R 55 25 K B 2k BE B (1 DR A 4 R
ol 25 BE AL T B B ) SRR SR BE I B 28 R B 46 2R, PG A5 B 10 B 28 SR 45 SR AT BT S v S B ] B 4
JERRERY, I B E N 2 R e R AT R, RS A AR AN PRI B i SRR B L R TS R, I R

DOI: 10.12677/csa.2026.162057 268 HEHUR 5 R


https://doi.org/10.12677/csa.2026.162057

KRS, FAE

IHLHIVR 2T I 2 7 S ARG L A, IFJ e SR 4 A . 25 RS Bn X 2% A 85 v 8 7 i JE 2 1) AN AR
SEME, i ] REACE T 2 MM R T AR B Dyl S s 4 7 i) BE AR B A RO
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T % P om SR A I REALRAE o ARG BEALES L T FEBEAG, 7 2 B ML T Hn A, IR AFE T A
REVEN AR R T WA TH[33]. RAE S 57 i s> 2 B o I eh B2 Al 1 (177 22 9w fie Sl %<
PRI, (AR ENARI S, IMORIE T AR AE SN M 2% I B Rt MtESTE, A
N RS DUR Z 5T T REVE, WHROUIR TR LR G TR LGN 3% S itk G iR
PR A%

5. EWERS S

AR IR A Python 3.8, VR 2% SJHESL Ny PyTorch 1.12.1 il PaddlePaddle 2.3.2, {4 & A 6 %
CPU. 16 GB #ZiN17LA M 12 GB [¥) NVIDIA GPU .47, #{F &%~ Ubuntu 20.04. A%IE PP-MPAD
BRI RO, ASSCAE MNIST, Fashion-MNIST LA CIAFR10 $i#a4E b ITJ@ seit .

[ A ARSI R AP, 78 MNIST A1 Fashion-MNIST ¥ 85 thidh 47 seab iy, Hszie s B (f 53
PRIy« BN BSHORE . B i LB 5 ¥ 5 B HE 57 MUD-HoG [15]f-FF— . TEXHE
HRWEN, RICHEE MBGEERECN Z AR MH Ld, B SR R RS <17, “2” DA “37
B EH bR 77 o SEER R IFRE M B W B AR — 80 BRI I EL I 12.5%1% 30 9 N % 47.5%.
£ CIAFR10 i 8 kA7 sLu6 i, i 3 E B 3 2 &E B RING SN, N T iRk, ®EE
BElRG % 85.

A SR HE 6 % (Accuracy) < §% & (Precision) fl 7 1] 3 (Recall) =A™ #8 b5 % 5k HEAT 28 & VR«
Accuracy- Precision P& Recall fit5 5 5l 4 =X(8)~(10) 7 o

Accuracy = TP+TN (8)
TP+TN+FP+FN
Precision = 9)
TP+FP
Recall = _ (10)
TP+FN

Hrp, TP RoRHIESREE, TN LR 7R, FP RRRIEREE, FN R E.

i PR A R AR AR R PG R PR R T, R R, USRS R R . X TE
[ Tk R B AR, s AR PR 28 HORS FE AN AR ZE (0 41 ol SR EAT M i, — B MU, B SRAE IR
A 7 [ 20 ok 7 THT P RE D R o

5.1. jHRESELE

NBAIE PP-MPAD VA A 2 JEBERE U aer 77 th (A 2k 5 B A OR 97 7 iR AE BB 2 7 T A AR %%
ARSI PR AT AS ISR AN BERA R BT e T RS IG . B ARRTE IR 1 PR, H “ V7 R
TR AT R BU 2R AL . AR Ak T 10 FED-MPAD FoR al Rl 2 2848 # 0k, HASK ) S R 2 4

72 S PAN
TEERE

MR P g L 42.5%0 HEAT SR, 2 J&7/R T PP-MPAD K H. ¥ 1 1 PP-no_MPAD. FED-
MPAD e BT ZL, B RIS R M b M 5 B & B 2 5 e 2 A TR itE .
R DIEMT IR B, =R b, s BEERMILEIR) PP-no_MPAD FERYMERR R R 2, HPLE
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Table 1. Experimental results of PP-MPAD variants ignoring different components
& 1. PP-MPAD BUAE B N EMRIRAY AR5 AL LER

BART 5 o B e P VN B SE 1) Wik HiENZ 22 RE
PP-MPAD S % x/ Y
PP_no_MPAD Y
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Figure 2. Accuracy curves of different variant methods on various datasets in Table 1
E 2. EREHIEE LR 1 hETFARETREMLZ
Table 2. Experimental results of PP-MPAD variants replacing various components
7% 2. PP-MPAD B EB M A EIRRI TS AL R
AR E: 5 R W A N i 5E [ Wik
PP-SF N
PP-AN l
PP-LF N
PP-SF_AN V
PP-AN_LF
PP-SF_LF V

HidE— PR TE PP-MPAD #2#5 Bri ko MIAHR () N ok, & ke 2 fo, Hh “ V7 £oR
TR RIS B (T 2R . WA T v PP-SF AU A5 B Moy, BRFAERY 7775 PP-MPAD f#
RS B EN 2w R A . B 3 BR T PP-MPAD 5% 2 FiRsihiithaexttt. SR ER, 74
AN FEHHESE ., PP-MPAD B IIHER 23 T BB AR T5, XA IRIE T AT AL 2 2 5 B 1 S g
(M S R . AR I B — T 2R A Y 84 77 15 (PP-SF. PP-AN. PP-LF)AfLt., PP-MPAD 7E
RN AAE . Hp, PP-AN YERER 2, JRELE T H IR 5 8 S i 5o, SEsia
WSRO R 2 2 B T4, BEARPERE R RE. PP-SF ITEREL T PP-AN, Ut BN #F 5 BFE Mo 7 — e R
LREEAE IERR 1. AR B REG AR AR, PP-LF RBlE A, X AR NS 3 E PR B i Wk F EoE
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Figure 3. Accuracy curves of different variant methods on various datasets in Table 2
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Figure 4. Accuracy curves of different method variants on various datasets
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VA EIEAEA R BUE SR L T LRGPtk Re, A CAE Fashion-MNIST FI MNIST LA K CIFAR10 %
e b, T PP-MPAD 5325 5 4 FR RATE AN R % 7 o o LG R IR Y v i 2, SEIG 45 Rk 3

DOI: 10.12677/csa.2026.162057 271 THEAURF 5 R


https://doi.org/10.12677/csa.2026.162057

KRS, FiE

FiR . BEAG R i EL B A3 n, & S0E PR B LR R B RIFR S R B, 7020 Ut B #3520 XA
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R, I HAEA R Brs v B e Z AR BGE AR U B S s i B et 5 e 1 . E =N 4R |, PP-MPAD
(AR AL R A R A0 T HoAt B v SR, HAAE MINIST 1 Fashion-MNIST BLK CIFARL0 4 b - e
For ik F] 96.87%A1 87.76%LA Iz 70.91%, AHELTXILHE MUD-HoG 7 Al#2 7t 1 0.47%71 0.43% LA K&
1.06%. PP-MPAD [T REIL VR T FAE ZAGE S b8 70 4248 7% 7 i f P A R g S A5 J2 ) 1) 22 SR AR ALE

NI BE S5 RS HE TR 5 b 22 R AR R % P . AHELZ F, MUD-HoG B A % £ R s el llge /1, (=
FEEGHE AR B ST [R] 43 AT AT R 25 7 i 7 PO s s 1, R I R AR P (B SR AN B AR, SRR
FEW 2T, FER I R HI W2, B4R EREA & PP-MPAD. CosDefense {3 4 ik I 4 5% AH AL FE A
AR, AEERE AR R S0 AT B2 R BRI A R R, MEDA X 7 IR 8 5% P i, Sk
KEIRH, 5l RAEFRRBIZIR S, RAERE AT E . FedAvg HI T8 B ENLE], FP0H B8 rvEfesh .
FedSECA il i — Bt L #1455 S A7 5 i 55 JR 4l % P i SE 0T, (E— AR Bl 1 A, X E € m) Mok
H&—EDiGE ), BARMEREAL T CosDefense F1 FedAvg, I &7 2% F b o Bb A i I 26 5 g
5, ARG RZE R S M B SRR A R, SREIEEIRA T 5 T B 68 /)52 R . DPFLA jiiid
BB EUN R P, R, £ RBEEIFF R s, BRI L A
XA FIBAT A, AR SRR o 3 B, BB RIEE R R IR E, HE
WA R IR SR R, AR AU I 2L K MUD-HoG 1 PP-MPAD. PP-MPAD K £ 481 . &1 XA
TREWE RE 05 10T & B3 5T SV A T R R B0 AN [ 8 B (i e 2

Table 3. Accuracy comparison of different algorithms models (%)
7 3. TREIEEREEMZERELER (%)

BRgrm SR, m BER S wm CRRE W ORER S CBER ) i

g R Sk Atk 125%  [AHE20.0%  HEE275%  (5EK 35.0% bk 425% 5K 47.5%
FedAvg 96.20 95.41 94.08 93.04 90.72 88.34
FedSECA 96.47 96.12 96.00 95.89 94.73 94.86
CosDefense 86.38 86.58 76.93 79.14 86.03 77.79
MNIST MUD-HoG 96.66 96.60 96.47 96.31 96.14 96.22
DPFLA 96.22 95.40 93.89 92.98 90.39 87.18
PP-MPAD 96.92 96.76 96.79 96.83 96.93 96.96
FedAvg 87.41 85.41 84.79 83.21 78.08 76.75
FedSECA 85.80 85.78 86.11 85.63 85.20 83.39
Eashion-MNIST CosDefense 68.33 69.29 70.82 69.84 78.46 78.22
MUD-HoG 87.75 87.73 87.77 87.29 87.01 86.41
DPFLA 87.58 87.05 87.23 86.46 85.94 85.67
PP-MPAD 87.81 87.87 87.82 87.87 87.31 87.87
FedAvg 69.07 67.50 65.3 64.05 62.21 61.57
FedSECA 67.95 66.41 65.92 66.39 66.58 63.81
CIFARLO CosDefense 52.21 53.92 53.42 59.57 59.15 59.83
MUD-HoG 71.60 71.16 70.57 69.18 68.47 68.14
DPFLA 68.86 67.51 64.55 63.04 61.48 60.92
PP-MPAD 71.32 71.65 71.32 70.67 70.65 69.87
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Figure 5. Precision curves of each algorithm for target label “7” across different datasets
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Figure 6. Curves of each algorithm for source label “2” across different datasets
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Figure 7. Accuracy curves of each algorithm across different datasets
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