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Abstract

To address the challenges that existing medical image segmentation models suffer from large pa-
rameter sizes and high computational complexity, making them difficult to be efficiently deployed
on resource-constrained edge devices, this paper proposes a lightweight U-shaped network design
and quantized deployment scheme based on the domestic Rockchip RK3588 development board.
Firstly, based on the U-Net architecture, the study constructs a lightweight network, MALUNet, by
incorporating Dilated Gated Attention (DGA), Inverted External Attention (IEA), and feature bridge
blocks to balance feature extraction capability with computational cost. Furthermore, the model is
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deeply compressed by combining one-shot layer pruning and normalized knowledge distillation
techniques, and the quantized deployment on the NPU is completed using rknn-toolkit2. Experi-
mental results on the ISIC2017 dataset demonstrate that the optimized MALUNetGlobalAtt student
model reduces the single-sample inference time by 96% compared to the original model while
maintaining high segmentation accuracy (mloU of 0.8126). This validates the feasibility and supe-
riority of this scheme for real-time intelligent analysis of medical images on domestic edge compu-
ting platforms.
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Figure 1. The illustration of MALUNet architecture
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Figure 2. The illustration of the attention module architecture
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Figure 4. Deployment workflow of the image segmentation model
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MALUNetMobile 0.4287 0.0018 1.2255 1.0423

% 2. % 3 IR, MALUNetGlobalAtt ¥J3K13 7 7€ 1SIC2017 $di 4 ()0 — LRI 43045 T He ik
PLBAURAE, B FRIETA TR LR )\ PR R B0 E 2 RK3588 FF MR, AT HFEAMER, JE5RLG
MALUNet #iRI7E PC 35 (IR 45 B pHont

2R, JR4A MALUNet ##47E 5K NVIDIA GeForce RTX4060 GPU _Ef) mloU 4 0.8847, Dice %
#v0.9194, HFEAHEHLRF A2 0.2503 s, FLOPs >4 355886,
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Table 4. Comparison of experimental results of student models
4. FEBRBSGERIER

A 2 Fk mloU Dice #% T (9) FHEFE I ] PG 26 FLOPs
MALUNetSmall 0.8122 0.8963 0.1854 25.9% 73,530
MALUNetMedium 0.6114 0.7005 0.0588 76.5% 265,982
MALUNetShallow 0.7154 0.8341 0.0131 94.8% 428,978
MALUNetNarrow 0.6559 0.7922 0.0100 96.0% 126,266
MALUNetEfficient 0.7594 0.8632 0.0140 94.4% 37,606
MALUNetAttLight 0.7640 0.8662 0.0070 97.2% 252,184
MALUNetGlobalAtt 0.8126 0.8966 0.0100 96.0% 253,436
MALUNetMobile 0.8012 0.8896 0.0201 92.0% 236,514

Image Attlight Efficient GlobalAtt Lite Medium Mobile Narrow Tiny

* O0NOaanLia
oBooGON
o6 omOoNe

Figure 5. Comparison of experimental results of student models
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