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Abstract

High-fidelity 3D reconstruction from multi-view images remains a significant challenge, particu-
larly under sparse viewpoints and in low-texture regions where conventional methods are often
unreliable. While 3D Gaussian Splatting (3DGS) enables real-time rendering, the decoupling of its
geometric optimization and anisotropic appearance modeling frequently leads to artifacts in tex-
tureless or specular areas. To address these limitations, we propose Anisotropic Gaussian Enhance-
ment with Smoothness (AGES), which formulates a probability-guided joint optimization frame-
work to jointly optimize scene geometry and view-dependent appearance within a single training
pipeline. Our approach introduces two key components: (1) an Adaptive Geometry-Appearance
Routing (AGAR) module, which dynamically routes each Gaussian to either a cross-view geometric
refinement branch or an anisotropic reflectance modeling branch based on a learned per-primitive
uncertainty measure; and (2) a Depth Smoothness Regularization (DSR) loss, which enforces local
gradient consistency between the rendered and geometrically refined depth maps to preserve
structural edges while suppressing noise. Extensive experiments on the Waymo and YouTube da-
tasets demonstrate that AGES significantly outperforms state-of-the-art methods at both full and
downsampled resolutions, achieving superior geometric consistency and visual fidelity in challeng-
ing real-world scenarios.
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Figure 1. Comparison of rendered images and surface normals on the Waymo dataset (Segment-102751) at a
4x downsampled resolution, along with the corresponding PSNR/SSIM/LPIPS index
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Figure 2. The AGES framework integrates anisotropic appearance modeling with geometry-aware optimization through cross-
view constraints
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Figure 3. Illustrative visualization of AGAR routing probability p, (G;) inatypical scene
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4. RIRIKRE SM MR L& TRIMERERTT

Table 1. Comparison of visual quality metrics at full resolution
= 1. RIATHET R REIEFRLER

Dataset Waymo YouTube
Method PSNR1 SSIM? LPIPS| PSNR1 SSIM1 LPIPS|
3DGS [26] 33.68 0.938 0.228 34.81 0.960 0.084
Stop-the-Pop [36] 33.38 0.936 0.230 34.87 0.960 0.083
GaussianPro [32] 34,01 0.943 0.205 35.53 0.961 0.070
Spec-Gaussian [27] 34.03 0.943 0.210 36.13 0.969 0.061
Ours 34.20 0.945 0.204 36.21 0.970 0.060

Ground Truth 3DGS Spec-Gaussian
33.23/0.951/0.080 34.49/0.963/0.061

Stop-the-Pop GaussianPro ' Ours
33.15/0.950/0.080 33.92/0.959/0.069 34.65/0.964/0.059

Figure 5. Comparison results of fine-grained local structures on the YouTube dataset (YouTubeO4: Eiffel Tower) at full
resolution, along with the corresponding PSNR/SSIM/LPIPS index

5. FEESPFET YouTube B#EEE(YouTube04: RIEREKIE)MALE FERLEMAIXTELLER R XTRIAY PSNR/SSIM/
LPIPS #5%%
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Table 2. Comparison of computational efficiency at full resolution

2. [RIG DR T RISIRIBIREL

Dataset Waymo YouTube
Method PIZRmsa)  HEFERSR/WE GPU A7 UIZRMFE JEBERF(E/ME GPU RAF
3DGS [26] 45 min 13s 357 mb 37 min 11 328 mb
Stop-the-Pop [36] 41 min 12s 342 mb 35 min 0.9 317 mb
GaussianPro [32] 37 min 12s 339 mb 31 min 0.9 309 mb
Spec-Gaussian [27] 35 min 1.1s 334 mb 27 min 0.8 295 mb
Ours 32 min 08s 325 mb 25 min 0.7 287 mb

4.3 A TRESHETHISEER

3 TR ABRERTER) Ax RAEIZR I E T ISRIRAE R, XA, & INERER B EN
SR AT IR I S e, 7 Waymo %34 FHU/S 7 PSNR = 36.00. SSIM = 0.962.
LPIPS = 0.084 [M &AL ST, —WiiatrsiiHif# 28—, AHLL Spec-Gaussian, FRAI1#E PSNR &7t 7 0.18 dB,
TMAH# T GaussianPro B2 H45 1 0.80 dB 135 A0 3, X 3 B LI T T 1 A 9 11 SHEmE A5 43 e [ (IR 58
7 5% B 5 1F YouTube Fidf 45 L 4E Bt — B 30E 7 BAT LRIz AL RE 11 . R GaussianPro 5 Spec-
Gaussian 7 SSIM fg A5 341X %) 0.986, FA1HI/772:4E PSNR (38.70)F1 LPIPS (0.017) EAT B AL T &A1,
W B FRATTAE 25 A6 248 15 A0k R o B A B A B ORFRRE ST o IXPMREAS R B 4R ) — SRR T R,
A AR 2 T8) (R 801 B AN SR BB 1E 2 FEAG I B 2 R R RE SR At i . il 6 Fow, RIEFESR
FURRFEMIE LN, ATV INEN Re R FRE = AL & . AL P R Tk, AT E S R A A E
TEW A G AT/ DI RS, BRALE Y S W WAR] 7R, XgE— 2 Ul AN IR B
JUAAT M2 55 TLART &R0 40 4/ W0 A [ B 1) OO 75 SR, 7] A AR ARG 23 20 S N i SR TR K 7] R
P E PR VE A EE SR S AR DR o R R, FRATT D7V AR S 0 PR AR T B AR
TEFRCR I, W5 4 FiR, 16 X B REEDPERIING R E T, AGES Mt — DRI B & MR M .
BT RGeS TNERITH I A B SRR AIG, T AT 75 R A DR R S DL J A o = A (RO, 52
Y AT R S HE R AR IR T T . BRI S, AGES 7 4x N RFESA: N A 2RI 1) SR 46 7 3 2 sk
Yy 65%, AR T X X R, TR I OO A SRS AR HER N N & S
E R, (RNt RE A8 G PR TSR R AS, A HCAE BE VR SZ IR BRI = @A 55 i B T m M SE AN
18

Table 3. Comparison of visual quality metrics at 4x downsampled resolution

= 3 AXTRESPHR TR REIEIREL R

Dataset Waymo YouTube
Method PSNR1 SSIM1 LPIPS| PSNR1 SSIM1 LPIPS|
3DGS [26] 35.94 0.961 0.090 38.48 0.985 0.021
Stop-the-Pop [36] 35.28 0.957 0.098 37.82 0.982 0.023
GaussianPro [32] 35.20 0.956 0.093 38.56 0.986 0.020
Spec-Gaussian [27] 35.82 0.958 0.090 38.66 0.986 0.018
Ours 36.00 0.962 0.084 38.70 0.986 0.017
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Table 4. Comparison of computational efficiency at 4x downsampled resolution

| 4 AT RAE D PR T HI AR AREL AR

Dataset Waymo YouTube
Method UIZRIFIR] - HEERIS (/M GPU A7 YIZRIIR HEERRFEMGE GPU AT
3DGS [26] 15 min 0.8s 297 mb 11 min 0.8 172 mb
Stop-the-Pop [36] 27 min 09s 305 mb 14 min 0.8 204 mb
GaussianPro [32] 13 min 0.8s 207 mb 9 min 0.7 150 mb
Spec-Gaussian [27] 12 min 0.7s 198 mb 8 min 0.6 145 mb
Ours 10 min 05s 174 mb 6 min 0.4 132 mb

Ground Truth 3DGS Spec-Gaussian
37.63/0.969/0.103 37.41/0.968/0.102

Stop-the-Pop GaussianPro Ours
37.21/0.968/0.106 37.29/0.969/0.105 37.97/0.970/0.094

Figure 6. Comparison of restored scenes on the Waymo dataset (Segment-102751) at a 4x downsampled resolution, to-
gether with the corresponding PSNR/SSIM/LPIPS index
[ 6. Waymo ##EE: (Segment-102751)7E 4x TR IR T ERIARII LRI RA) PSNR/SSIM/LPIPS #515

4.4, jHERSCIG

5 M RATHEZE T R QAL IEAT T RGMERIPPAL . 7E Waymo $iE 5 |, FELEIA (B & AGAR
5 DSR)HLTS T PSNR=35.82. SSIM =0.958. LPIPS=0.090 [{J45 % . 5] N\ AGAR J&, &Iifabriyss
FasE 2T+ (PSNR = 35.91, SSIM =0.961. LPIPS =0.086), &M 5 JL{aT 2 8] )28 B 305 B g g 35 38
FEENE. EIEA EdE—P A DSR J5, ThRE4kZEEEF 2 PSNR = 36.00. SSIM = 0.962. LPIPS =
0.084, 5 BF 1 1E 0 TRUE i 5 A, Jo 3 ) L ART — SO PE SR AL T ELAMAE RIS A o ] 7 45 R T A0 I R 4 R L R
IR T IR RS . SELRAE LR J LA I SR AR B 5]\ AGAR Ji, AN LR 2 [ 3SR 15 2
WA RN X, PN DSR MM SR Mg, RN EINED — . ZREKE, R
S5 IR T A AL AP AR J AT — B TS R = i O L
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Table 5. Ablation experiment on Waymo dataset
%< 5. Waymo iz LAY HRASEIE

Method PSNR SSIM LPIPS
w/o AGAR w/o DSR 35.82 0.958 0.090
w/ AGAR w/o DSR 35.91 0.961 0.086
w/ AGAR w/ DSR 36.00 0.962 0.084

Ground Truth w/o AGAR, w/o DSR
37.79/0.970/0.069 37.93/0.972/0.063

w/ AGAR, w/o DSR w/ AGAR, w/ DSR
38.03/0.973/0.061 38.15/0.974/0.059

Figure 7. Ablation study on the Waymo dataset (Segment-100613) at a 4x downsampled resolution, along with the corre-
sponding PSNR/SSIM/LPIPS values
7. FE X TRAEESPEZRT Waymo HESE (Segment-100613) HU5HFE SLIE 25 R K X K A PSNR/SSIM/LPIPS 3545

5. &ip

ASCER T AGES HEZR, N RLHE % 7 57 P (AL A A RS AR5 B PR IR ) LT 20 SRR 45 R figf 4k 3D
Gaussian Splatting H JL{A—Z i Fl B Ge—HESL . JATAT B S R BB Se Tl 1 B R RESR T —
#& AGAR R, FGIN T J5 BRI MR B LN sm L5 T LT 2 [ AR & A5 18T DSR 1EN
T TR LT — 2. SCIRES SRR, ARk s b AL oE B 7 T A I8 T B et 77
2, JEHAERKFAIRLE T LTI 1T AN R R T 45 A TR IS o SR, A RTHEZR AEAL B o B B A 37 S 747
FEJRRR, I AR T BOSHER AN UL Z T, XA A KRz 2h (K S S 5t h ] g S BRAIE AT . ROk
TARRBOI T RAZHELY R BB, T AN A 2R 72 G BRI, HHRZAE L ZOCIEFAT N @M
JUfTE SR EENS . BEAh,  SINTE SCHREA Bt — 2D SR T AR DX B S e T _E A RE 7T -

DOI: 10.12677/csa.2026.162059 300 THENUER 5 N H


https://doi.org/10.12677/csa.2026.162059

SE

(1]

(2]

(3]

(4]

(5]

(6]

[7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Weng, C., Curless, B., Srinivasan, P.P., Barron, J.T. and Kemelmacher-Shlizerman, I. (2022) HumanNeRF: Free-View-
point Rendering of Moving People from Monocular Video. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, 18-24 June 2022, 16189-161999. https://doi.org/10.1109/cvpr52688.2022.01573

Li, T, Slavcheva, M., Zollhoefer, M., Green, S., Lassner, C., Kim, C., et al. (2022) Neural 3D Video Synthesis from
Multi-View Video. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans,
18-24 June 2022, 5511-5521. https://doi.org/10.1109/cvpr52688.2022.00544

Lu, F., Xu, Y., Chen, G., Li, H., Lin, K. and Jiang, C. (2023) Urban Radiance Field Representation with Deformable
Neural Mesh Primitives. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, 1-6 October 2023,
165-176. https://doi.org/10.1109/iccv51070.2023.00049

Jiang, Y., Liao, Q., Li, X., Ma, L., Zhang, Q., Zhang, C., etal. (2025) UV Gaussians: Joint Learning of Mesh Deformation
and Gaussian Textures for Human Avatar Modeling. Knowledge-Based Systems, 320, Article ID: 113470.
https://doi.org/10.1016/j.knosys.2025.113470

Wen, X., Sun, K., Chen, T., Wang, Z., She, J., Zhao, Q., et al. (2025) A Nerf-Based Technique Combined Depth-Guided
Filtering and View Enhanced Module for Large-Scale Scene Reconstruction. Knowledge-Based Systems, 316, Article
ID: 113411. https://doi.org/10.1016/j.knosys.2025.113411

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R. and Ng, R. (2020) NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In: Vedaldi, A., Bischof, H., Brox, T. and Frahm, J.M., Eds.,
Computer Vision—ECCYV 2020, Springer, 405-421. https://doi.org/10.1007/978-3-030-58452-8_24

Zhu, F., Guo, S., Song, L., Xu, K. and Hu, J. (2023) Deep Review and Analysis of Recent Nerfs. APSIPA Transactions
on Signal and Information Processing, 12, 1-32. https://doi.org/10.1561/116.00000162

Zhang, X., Fanello, S., Tsai, Y., Sun, T., Xue, T., Pandey, R., et al. (2021) Neural Light Transport for Relighting and
View Synthesis. ACM Transactions on Graphics, 40, 1-17. https://doi.org/10.1145/3446328

Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T. and Srinivasan, P.P. (2022) Ref-NeRF: Structured View-
Dependent Appearance for Neural Radiance Fields. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), New Orleans, 18-24 June 2022, 5481-5490. https://doi.org/10.1109/cvpr52688.2022.00541

Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P. and Hedman, P. (2022) Mip-NeRF 360: Unbounded Anti-
Aliased Neural Radiance Fields. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, 18-24 June 2022, 5460-5469. https://doi.org/10.1109/cvpr52688.2022.00539

Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B.P., Srinivasan, P., et al. (2022) Block-NeRF: Scalable Large
Scene Neural View Synthesis. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New
Orleans, 18-24 June 2022, 8238-8248. https://doi.org/10.1109/cvpr52688.2022.00807

Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R. and Srinivasan, P.P. (2021) Mip-NeRF: A
Multiscale Representation for Anti-Aliasing Neural Radiance Fields. 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), Montreal, 10-17 October 2021, 5835-5844. https://doi.org/10.1109/iccv48922.2021.00580

Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., et al. (2021) Nerfies: Deformable Neural
Radiance Fields. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021,
5845-5854. https://doi.org/10.1109/iccv48922.2021.00581

Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A. and Duckworth, D. (2021) NeRF in the
Wild: Neural Radiance Fields for Unconstrained Photo Collections. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 7206-7215.
https://doi.org/10.1109/cvpr46437.2021.00713

Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A,, et al. (2021) DONeRF: Towards Real-
time Rendering of Compact Neural Radiance Fields Using Depth Oracle Networks. Computer Graphics Forum, 40, 45-
59. https://doi.org/10.1111/cgf.14340

Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J. and Valentin, J. (2021) FastNeRF: High-Fidelity Neural Rendering
at 200FPS. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021,
14326-14335. https://doi.org/10.1109/iccv48922.2021.01408

Zhang, Y., Wei, J., Zhou, B., Li, F., Xie, Y. and Liu, J. (2024) TVNeRF: Improving Few-View Neural Volume Rendering
with Total Variation Maximization. Knowledge-Based Systems, 301, Article ID: 112273.
https://doi.org/10.1016/j.knosys.2024.112273

Wang, F., Yin, L., Qin, Y., Gao, X., Tang, X. and Zhou, H. (2025) Ray-Decomposed and Gradient-Constrained Nerf for
Few-Shot View Synthesis under Low-Light Conditions. Knowledge-Based Systems, 330, Article ID: 114568.

DOI: 10.12677/csa.2026.162059 301 THEAUR 5 R


https://doi.org/10.12677/csa.2026.162059
https://doi.org/10.1109/cvpr52688.2022.01573
https://doi.org/10.1109/cvpr52688.2022.00544
https://doi.org/10.1109/iccv51070.2023.00049
https://doi.org/10.1016/j.knosys.2025.113470
https://doi.org/10.1016/j.knosys.2025.113411
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1561/116.00000162
https://doi.org/10.1145/3446328
https://doi.org/10.1109/cvpr52688.2022.00541
https://doi.org/10.1109/cvpr52688.2022.00539
https://doi.org/10.1109/cvpr52688.2022.00807
https://doi.org/10.1109/iccv48922.2021.00580
https://doi.org/10.1109/iccv48922.2021.00581
https://doi.org/10.1109/cvpr46437.2021.00713
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1109/iccv48922.2021.01408
https://doi.org/10.1016/j.knosys.2024.112273

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

https://doi.org/10.1016/j.knosys.2025.114568

Hermann, M., Kwak, H., Ruf, B. and Weinmann, M. (2024) Leveraging Neural Radiance Fields for Large-Scale 3D
Reconstruction from Aerial Imagery. Remote Sensing, 16, Article 4655. https://doi.org/10.3390/rs16244655

Xie, S., Zhang, L., Jeon, G. and Yang, X. (2023) Remote Sensing Neural Radiance Fields for Multi-View Satellite Pho-
togrammetry. Remote Sensing, 15, Article 3808. https://doi.org/10.3390/rs15153808

Liu, L., Gu, J., Zaw Lin, K., Chua, T.S. and Theobalt, C. (2020) Neural Sparse VVoxel Fields. Advances in Neural Infor-
mation Processing Systems, 33, 15651-15663

Yu, A, Li, R., Tancik, M., Li, H., Ng, R. and Kanazawa, A. (2021) PlenOctrees for Real-Time Rendering of Neural
Radiance Fields. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021,
5732-5741. https://doi.org/10.1109/iccv48922.2021.00570

Hu, T., Liu, S., Chen, Y., Shen, T. and Jia, J. (2022) EfficientNeRF—Efficient Neural Radiance Fields. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 12892-12901.
https://doi.org/10.1109/cvpr52688.2022.01256

Reiser, C., Peng, S., Liao, Y. and Geiger, A. (2021) KiloNeRF: Speeding up Neural Radiance Fields with Thousands of
Tiny MLPs. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021,
14315-14325. https://doi.org/10.1109/iccv48922.2021.01407

Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T. and Debevec, P. (2021) Baking Neural Radiance Fields for
Real-Time View Synthesis. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17
October 2021, 5855-5864. https://doi.org/10.1109/iccv48922.2021.00582

Kerbl, B., Kopanas, G., Leimkuehler, T. and Drettakis, G. (2023) 3D Gaussian Splatting for Real-Time Radiance Field
Rendering. ACM Transactions on Graphics, 42, 1-14. https://doi.org/10.1145/3592433

Gao, X., Huang, Y., Jiao, S., Jin, X., Lyu, X., Qi, X., et al. (2024) Spec-Gaussian: Anisotropic View-Dependent Appear-
ance for 3D Gaussian Splatting. Advances in Neural Information Processing Systems 37, Vancouver, 10-15 December
2024, 61192-61216. https://doi.org/10.52202/079017-1956

Yan, Z., Low, W.F., Chen, Y. and Lee, G.H. (2024) Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering.
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 16-22 June 2024, 20923-
20931. https://doi.org/10.1109/cvpr52733.2024.01977

Yu, Z., Chen, A., Huang, B., Sattler, T. and Geiger, A. (2024) Mip-Splatting: Alias-Free 3D Gaussian Splatting. 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 16-22 June 2024, 19447-19456.
https://doi.org/10.1109/cvpr52733.2024.01839

Meng, J., Li, H., Wu, Y., Gao, Q., Yang, S., Zhang, J., et al. (2024) Mirror-3dgs: Incorporating Mirror Reflections into
3D Gaussian Splatting. 2024 IEEE International Conference on Visual Communications and Image Processing (VCIP),
Tokyo, 8-11 December 2024, 1-5. https://doi.org/10.1109/vcip63160.2024.10849936

Gao, J., Gu, C., Lin, Y., Li, Z., Zhu, H., Cao, X., et al. (2024) Relightable 3D Gaussians: Realistic Point Cloud Relighting
with BRDF Decomposition and Ray Tracing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T. and
Varol, G., Eds., Computer Vision—ECCV 2024, Springer, 73-89. https://doi.org/10.1007/978-3-031-72995-9 5

Cheng, K., Long, X., Yang, K., Yao, Y., Yin, W., Ma, Y., Wang, W. and Chen, X. (2024) GaussianPro: 3d Gaussian
Splatting with Progressive Propagation. arXiv: 2402.14650.

Zhang, J., Zhan, F., Xu, M., Lu, S. and Xing, E. (2024) FreGS: 3D Gaussian Splatting with Progressive Frequency
Regularization. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 16-22 June
2024, 21424-21433. https://doi.org/10.1109/cvpr52733.2024.02024

Yu, Z., Chen, Z., Zhou, Z. and Cao, H. (2025) CGC-GS: Cross Geometric Cues Constrained Gaussian Splatting.
Knowledge-Based Systems, 330, Article ID: 114630. https://doi.org/10.1016/j.knosys.2025.114630

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., et al. (2020) Scalability in Perception for
Autonomous Driving: Waymo Open Dataset. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, 13-19 June 2020, 2443-2451. https://doi.org/10.1109/cvpr42600.2020.00252

Radl, L., Steiner, M., Parger, M., Weinrauch, A., Kerbl, B. and Steinberger, M. (2024) StopThePop: Sorted Gaussian

Splatting for View-Consistent Real-Time Rendering. ACM Transactions on Graphics, 43, 1-17.
https://doi.org/10.1145/3658187

DOI: 10.12677/csa.2026.162059 302 THEAUR 5 R


https://doi.org/10.12677/csa.2026.162059
https://doi.org/10.1016/j.knosys.2025.114568
https://doi.org/10.3390/rs16244655
https://doi.org/10.3390/rs15153808
https://doi.org/10.1109/iccv48922.2021.00570
https://doi.org/10.1109/cvpr52688.2022.01256
https://doi.org/10.1109/iccv48922.2021.01407
https://doi.org/10.1109/iccv48922.2021.00582
https://doi.org/10.1145/3592433
https://doi.org/10.52202/079017-1956
https://doi.org/10.1109/cvpr52733.2024.01977
https://doi.org/10.1109/cvpr52733.2024.01839
https://doi.org/10.1109/vcip63160.2024.10849936
https://doi.org/10.1007/978-3-031-72995-9_5
https://doi.org/10.1109/cvpr52733.2024.02024
https://doi.org/10.1016/j.knosys.2025.114630
https://doi.org/10.1109/cvpr42600.2020.00252
https://doi.org/10.1145/3658187

	AGES：各向异性高斯平滑增强的三维几何一致性重建方法
	摘  要
	关键词
	AGES: Anisotropic Gaussian Enhancement with Smoothness for Geometric-Consistent 3D Reconstruction Method
	Abstract
	Keywords
	1. 引言
	2. 相关工作
	3. 方法
	3.1. 自适应几何–外观路由模块(AGAR)
	3.2. 深度平滑正则项(DSR)
	3.3. 训练策略

	4. 实验与结果
	4.1. 实验设置
	4.1.1. 数据集与评价指标
	4.1.2. 实现细节

	4.2. 原始分辨率下的实验结果
	4.3. 4×下采样分辨率下的实验结果
	4.4. 消融实验

	5. 结论
	参考文献

