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Abstract

Knowledge distillation, as an efficient technique for model compression and knowledge transfer,
relies critically on the design of its loss functions, which define the optimization objectives and the
dimensions of knowledge transfer for the student model to mimic the teacher. This paper provides
a systematic survey of the research progsress on loss functions in knowledge distillation. Firstly, it
introduces classical loss functions based on output responses, such as Kullback-Leibler divergence
and mean squared error. Secondly, it reviews loss functions based on intermediate feature
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matching, including attention transfer and hint learning. Subsequently, it summarizes advanced
loss functions based on relational and structured knowledge matching, such as similarity-preserv-
ing and correlation congruence losses. Finally, future research trends are discussed, pointing out
that adaptive loss combination, task-specific customization, and theoretical analysis are important
directions. This paper aims to provide a clear reference for researchers, especially practitioners, in
selecting and designing loss functions for knowledge distillation.
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Table 2. Performance comparison of knowledge distillation loss functions on CIFAR-100 database (Teacher: ResNet32x4,
Student: ShuffleNetV2)
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Figure 1. Evolution and context of knowledge definition in knowledge distillation
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