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Abstract

Few-shot semantic segmentation aims to achieve pixel-level segmentation of novel classes with only a
limited number of annotated samples. However, due to the scarcity of support samples, existing meth-
ods mainly rely on visual features to construct class prototypes, which are easily affected by back-
ground clutter and intra-class variations, leading to unstable prototype representations. To address
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this issue, this paper proposes a text-guided prototype feature modulation approach for few-shot se-
mantic segmentation. The proposed method introduces category-level textual descriptions as high-
level semantic priors, and adaptively aggregates multiple text features through text-visual similarity
modeling. Furthermore, a feature-wise linear modulation mechanism is employed to dynamically ad-
just the support prototypes, thereby enhancing class discriminability and suppressing irrelevant se-
mantic interference. The proposed text-guided feature modulation module improves the generaliza-
tion ability to novel classes without introducing significant computational overhead. Experimental re-
sults on the PASCAL-5! and COCO-20! datasets demonstrate that the proposed method consistently out-
performs the baseline models, validating its effectiveness.
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Figure 1. The framework of the proposed method
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Figure 2. Adaptive aggregation process of textual features
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5.1. SEHLETS

ASCAEPIAARAE R NREATE Xy #1%EE PASCAL-5' [12]81 COCO-201 [13] - B i I 7 vEHEAT I
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IR AN EAESRFE, BNTHEEE 5 1305, COCO-20' ki T MS COCO [16], FLf# 80 4
FH, FIRERI N 4 ST, BASTHEAE 20 NI FRIBARERS LRI DML, 7658 | A T4E AT,
HATHERT IS, HRINGSTEREH EAES. PR, A SCRASF28 I (mloU) /R 2
PN ERR . A SCRH P ZREF ) ResNets0 [L7]11E B W&, FEAEIZRid FE b € K2, SCARHIE B il
YIZRIT CLIP ViT-B/16 [41B 8452 HL . F N UG R 9e— R 473 x 473, FRAE I ZRd 72 AR F BE A L48 5OFI 7K 7
FHFE AR DR BN . /E PASCAL-5' fll COCO-20' 435115 100 %8H1 50 %, RbasikH SGD, #tA/h
N8, WIMRZ %N 5e-3, TN 0.9, BUEEERA le—4. FrfAsSLiustT PyTorch HEZLSLHL,

5.2. kR

FATREAR 177 125 2 Tl 1/ INEE AT Lo BUTTVEIEAT T 0P ESEge . 4 1 45t T 7E ResNet50 &1 4
25N, BRLAE PASCAL-S' itk Ly FIMERE. W LIEH, AT HEL 7% BAM [25], ASCTTVELE 1-
shot A1 5-shot L& TG 1 FaE IUTERESETH, RWIFTHEHH AOSCA 5| T IR RRF AL R T VA REB AR /A
FA T A BRI R AT I, T 2 R TR B 2R Az AL RE . ek, IRATIEAESE A
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Table 1. Comparison of mloU performance on the PASCAL-5' dataset
< 1. PASCAL-5' #(#25 £ mloU $E#R 1% REXTEL

1-shot 5-shot
50 5t 52 53 mean 50 5t 52 53 mean
CANet [18] 5250 65.90 51.30 5190 5540 5550 67.80 51.90 53.20 57.10
PGNet [19] 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50
CRNet [20] - - - - 55.70 - - - - 58.80
PPNet [21] 4858 6058 55.71 46.47 5284 5885 68.28 66.77 57.98 62.97
HTM4% ResNet5s0  PFENet[9]  61.70 6950 5540 56.30 60.80 63.10 70.70 55.80 57.90 61.90
HSNet [22] 64.30 70.70 60.30 60.50 63.90 70.30 7320 67.40 67.10 69.50
DCP [23] 63.81 7054 6116 5569 6280 67.19 7315 66.39 64.48 67.80
DAM [26] 67.30 72.00 6240 59.90 6540 7360 7460 69.90 67.20 7130
ABCNet [27] 68.80 73.40 6230 5950 66.00 7170 7420 6540 67.00 69.60
BAM [25] 68.97 7359 6755 61.13 6781 7059 7505 70.79 6720 70.91
ours 70.03 7424 6830 6092 6837 7103 7535 7082 67.16 71.09

Tk
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Table 2. Comparison of mloU performance on the COCO-20' dataset
Fz 2. COCO-20' #i#EE £ mloU $EHR1EREXTEL

1-shot 5-shot

Jiik
50 51 52 53 mean 50 51 52 53 mean

PPNet [21] 28.09 30.84 2949 2770 29.03 3897 4081 37.07 3728 3853
PFENet[9] 3650 38.60 3450 3380 3580 3650 4330 3780 3840 39.00
HSNet [22] 36.30 43.10 3870 3870 3920 4330 5130 4820 4500 46.90
DCP [23] 40.89 43.77 42,60 3829 4139 4582 49.66 43.69 46.62 46.48
DPCN [24] 4200 47.00 4320 39.70 43.00 46.00 5490 50.80 4740 49.80
DAM [26] 39.80 4100 40.10 40.70 4040 50.10 51.00 5040 49.60 50.30
ABCNet [27] 4230 46.20 46.00 4200 4410 4550 51.70 52.60 46.40 49.10
BAM [25] 4341 5059 4749 4342 4623 4926 5420 5163 4955 51.16
ours 4432 4936 4780 4314 4615 4710 5430 5159 4942 50.60

B 4%
ResNet50
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NRG WA RIS BV RERIREM, FATFE PASCAL-5 #dia 4 FITJ T iHRERsLR:, JFR
A 1-shot it BHEAT IPAli o BT SEI ) SRR AR HE A DU 7 52 SRR P, RI2 BIEPUAS flod EdEATINGA, &%
AVERETRAR A R AT ME . SCERE R INE 3 .

BT S, BA RSB Al B30 5 AR BOUARIE o 3 B SCARFAE 3R & 3R L& SOA
51 W A BRI AR, DA AIE A A BB 0 (AT R 5, LI NS G SO LS I B AT R —
SERIVERESR T, R i J2 AT SCRERS 9/ INFEASTE S0 BIR B RN TS5 2o AR, RN 2 25%
SCARAIRBEAT T e SN RE DL, VR BERE S AR AT BR o fERUEERY b, 20 S NS T AR SO
RHIE FE BB A LS, B VE RS B RF SRR T, OB 45 & SRR RN 2 26 SOARHR HEAT S A AL,
AT 5 W5 AL AR SRR UAE R, AT SCAS TU AR B F RE 52 . AHLEZ R, 5]
NSO 5| 5 ) T R R I 26 P8 R fll BB B 6 SR BE DN W B PR RESR T, SRIIE RSO X AURE S B S
o B E TR A, e SR JF AR I . I JE OGHE ST 5 T R A 5 B HAA RURE A

B BRI A, BALE 1-shot 375t NS iR ARVERE, RUISNSCAEIE ., FE N SR
o 5 IFE AL f 7R h e BB R IEAME, JEFSRETH TR D REA A T I IR RE S AL RE T

Table 3. Ablation study results of different modules
3. BEHUHRMIKIGSER

ESi &N SUAKFAE H &N R A JE BRI 1A 1 mloU
67.81

\ 67.94

\ \/ 68.08

\ \/ 68.17

\ V Y 68.37

RTINS R IR KR SRR BE AR, FRATTE PASCAL-5 34 4E 1 fold-2 ¥4, SFAR[ESC
AR EE N #4177 Rbs2ss, ZRNE 4 Pros. WTLAOWER], 2 N=53% 10 i, AR SZ IR,
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Table 4. Effect of the number of different text descriptions on model performance

4. PRI AR HEFRE M RERIFME

SRR AR N mloU
5 67.94
10 68.17
20 68.30
50 68.23

5.4. AL

AN I AL S5 R ) 7 AT AT R b, BARSR a3 Fron. b, @) TR
SCRFAE BGOSR, 55 (0) AT 2 PR M L USRS, 28 ()T 40 Hh 1 220 B BAM [25] 117> &
iR, AT NAITTEN S TILE R TR SR, AR TE, AR B AR IA 5 2] AT 5T
YL 75 TR B B A

(@)

(b)

(d)

Figure 3. Diagram of visualization results
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