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Abstract

Facial Expression Recognition (FER) in real-world scenarios is severely hampered by data ambigu-
ity and label noise. Existing methods predominantly rely on deterministic embeddings, mapping
each facial image to a fixed point in the feature space. However, this paradigm forces the model to
overfit ambiguous samples—such as those with occlusion, low resolution, or subtle compound emo-
tions—to rigid categorical labels, thereby degrading generalization capabilities. To address this, we
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propose a novel Ambiguity Perception & Suppression Module (APSM). Unlike traditional approaches,
APSM models facial features as Probabilistic Gaussian Distributions, characterized by a mean (se-
mantic center) and a variance (uncertainty). We introduce an Uncertainty-Attenuated Loss that dy-
namically weighs the learning process: samples with high estimated uncertainty contribute less to
the gradient update, effectively suppressing the impact of noisy data. Extensive experiments on the
RAF-DB and AffectNet datasets demonstrate that our method significantly improves robustness
and achieves state-of-the-art performance without requiring complex external data or manual
cleaning.
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1. 5|

TR 25 STTE VLA DL 1 2 A7 1R 0 AT A 5 25 R (1] o TS A IR (FERVWE N — AN T 55, T
BLAE SEI0 ARG 2 AR 5 12 P AL B N SE R 5t . RAF-DB [2]. AffectNet [3]55 KU
BENIX — kR AR AL TS SR, X 8BS s B 1 DU RR P S I T S = A R N DA
PREE o TRV BCSUE ST AR SR 45 NG 3155 TR0 Aty SR 1 SR kAR, RORFRAIR 17 NI 2 155 1R rry e
Wit EEISg R0, HEEEALIERUETR . RRKEBTRENE RN Z ERAES, AR TEE
P M ERSEARRAGRE S o AT R o bR T Ay S i bR v AN TR, 7E RS HARE 1 O bR A
A 3 S AT TE AR 2 7

FEPAIRE FER J51% 32 BEARHA 5 M RRAE 2% 2] . TR R4 JL 1Y) ResNet [4]12844, &2 5 N3
F Transformer [5]f) 75 (POSTER++ [6], TransFER [7]%%), 8% B/ T 5t 5 & 244 25 [A)vE 2 AL
(Spatial Attention) 5 ) HARFAE Rl & g, DABRE S H 0 5l 7 B THT 348 IX 38 o 3K 6 G0 R THD 0 3R A R 7 VR K
Z R A e R 75, T8 I R FE A 8 0 45 i N 1) R A7 MG AR B — /1 [i] 5 ARRAAE ) 225 Je 0 )1 /)
ARFAE ) B 5 LSS B RR 2 2 TR PR P B8 o 3k Pff s M D VR AR AR B B S T 7 1 i B P 2 ot 15 7 Tl
FEA . RS B AT SCHE H A7 AE 2 BB O 15 26 I B80S B & FRIE R I 0 B2 2 MR, ISR
ifl P ) BRI N AE 43 2K 5 75 A R — N8 I B SERR A o AR G R AE LI 23 il A S5 00 & T3 AR AR AH
[ R 25 AT LA X AN B A, AL AR 2S 1A LUKk, AT bR 7 ) 0, A 20 A
FEIE A A E A (Sample Re-weighting) AR TE K 22 o 451101, SCN [8]F2 H 1 — Fh H X 4% (Self-Cure
Network), % I ZRRE A HEAT HE P A AR A0 i M 75 FR 2 5200 . DMUE [9] Mk — 4248 T I8 7E M
PRI, FEFI B AN 8 VEAS T SR AR DL bR i B SO . AR, RUL [10] 2% A AN e 1 2% 2
PR HE S B ASHA s M 2 ) DAS S ASE R () B itk . R IR BT VAAE — EFEFE LB AR T M T, (HEA]
AAEAFEP N ER P 1R E s T B E A B W & sk 2 B BOUI ZR0n R, Xk DL 3o sh 48 i BB 5 T
Wz FLUCRBEATR 2 E T AR AR, 1 FFRE e s ASARRAE A B (1 3 A SRAL BRI R . 4
X AUARZE T REA 15 H UG AR S gtk DLHRA BB SRR, Al BRI A R B, H2
A REAE R 25 A S B E AR E A N E R BEE . O T Y 5] B E AT R IERAE, I TAEMm
DAN [11]15| N T 2338 XiE R AHLHIRAHPE OCHERAE, 17 EAC [12] )38 i 2 BRiE 2 /7 — Bt Kl (g7
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5] B AT AR R R o BT ST B 1 e 2800 e 1 7 VR AR AR A TE T e i DU R 1) ELAS S L 30 & P
AREA . RS 37 A5 A7 BEAR 2 RSO EUR I, SRAT I & 2 SR A W e I LA, FRREER R AE 2% 7]
(OB IR X G 8

T R — R, ASCHE T RO FE RN L I A (Ambiguity Perception & Suppression Module,
APSM). ASCAFRAEFH s AGTE, & AR B HR N B — AN BENIETE S ] b . BRI S, A SCHRHIER
VAEZINE: [waiil N(y,az) o Horr, U2 o F T2 A2 S B KB SR AN 52 14 (aleatoric uncertainty), B %k
P A B M o G IR X MO E T IAUR R R, YRR B B OR B IR AR B E S,
MK 257 2T Be DB R E T SEROHE Lo SXPLHIAE A3 A5 20 R 0 4 2% 2] e DR v 7E TSR 40dl b, AN 7E & e
W BB R RIS IR . ARSI A LR TR X A E 1 BR .

TAER)EZTTHER AT A g8 0 R

ASCHE TR FE IR N SRR (APSM) o 1EA— /MR E I EDREED R, B TR R E
PERFAEYE R, @D R ER A 2 e m i A, R SRR AL T B S SR TR T R AR A
1 5 T (Aleatoric Uncertainty) .

ALV T MO 2 M E IR AR 2% (Uncertainty-Attenuated Loss)BLH . %L F ] 2 S B 5 25074
TR R A R R P RORR AL, R T AN EBIN MR ERAR T, LTSN LT RRET
A AN T AR AR bR 2 0 R T

ASCHE) AL B B St T8 42 (RAF-DB F1 AffectNet) k47 7 KES2IG. SR EH, %5ER

PRTF T RRRUTE AU IAEE N B, JRTE U P AR B T 9 2% (1 0L HAS T S S dE (SOTA) ik il M

55 Mg

AR W N 28 2 R E g s N R ERER R R A E S S A TR 5 3
VA ) R BT A ROR TR S A AR (APS M) R 52 ¥ B AN 8 P AR O iR B 4 TR ORTE
RAF-DB F1 AffectNet ZidE 45 FHx Ebszas . ERh AT ST HAb 45 58, 25 5 e 4543,
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Figure 1. Framework comparison between our method and existing approaches: Traditional deterministic methods (a)
distort the feature space by forcing fits to ambiguous samples, whereas our proposed probabilistic APSM method (b) models
uncertainty via Gaussian distributions to automatically detect and suppress noisy, ambiguous data

1. AXFESMBFHERERIMELINT : F5HHE M5 7E () EaF SR A S BHFHET B, AR
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2. XTI
2.1. EERRIEIRA

ST TR0 A7 TR A 2 BAR R R SRR S P AR T B S0 CK+ [13]), RS, KIS
££ 41 FER2013 [14]41 EmotioNet [15]85#& o F- 777 2 008 T F L vH I RFAE (W1 LBP [16]). BEA&TREE
5 3 1R T R R R B S A AR S 1) A, T AR R 28 X 2 (CININ (19 77 ¥ 320 T B R 0

N REX LS S rp S A AR RS RO BN S S PRR, A I T 2 Bl S . 49141, OADN
(L7760 THT B 1Y ) R 7 SR IR AN 4% ;. PSR [18]38 5 B8 20 # B AR AR v 1 B AIMIG 5 52 P44 P 1R 31 e
A KTN [19]00) S48 ik A T A 0 S 00 = K0 1 S 96 0 RS, FH 2 BF 4h3% 5. ResNet [417 # PV RRAE S
BT M. T RRHER A 77, R IV 2 R . #lin, DAN [11[#2H T 2 3kA8 MR
7 I 28 SR8 2 TR 305 O 4 X SR PR A LA ;. POSTER++ [6] 0454 T % Transformer F11 CNN [, @it
B & P S5 MR I 2 RBERFAE o B 7 D9 268 2 (1 et o ] Ak R s 205 M s 4, 2 i A R A R ) e
PEIE BN AR, BF9EE 4R T Co-teaching [20] DivideMix [21125 7575, (I R AS 57 176 B2 s B 2
] R e P T

SR, BT TR SR A 18 o B (0 2R AL AR LA A SO S, B Bk 238 F 5 i #8 31 FER {145+
A Ok B AR AR . R X S VA TERRE R I GE /) EIUAR T W5 10, (eI R 2B e Mk A
(Deterministic Embedding) 76 ke e 7 A BEAG BILG DR AIE 23 ) B — AN R o X PR ] 5 R il T 220
T EUG A B 135 SO, A AR L T S BRI R AB B 2% 5 P AR LA

22. NHHEME S SHRBAN

E DU iR B 27 ST 40Uk, AN e M 3E 4 40 28 DA NN € 18 (Eppistemic Uncertainty) A5 28 AN
JE T (Aleatoric Uncertainty) [22]. Hi &I T8 S50 A€ 1, g n8dm v b e I T30 A
S [ PR 0 7 Bl SIS B O . RS AR AR S R, Joikim i N B bR, R AR

TEIRPE %217, Deep Ensembles [23]3d it 52 i 2 AN SR A RS T P00 A8 s 1, (ETE ST A 4
Ko FENKAIE, Shi AR H THER AR (PFE) [24], JFOI R NG RRAE AR 7 40 A
Horh 77 22 T 3R BUG T 5t AN 58 M o IX PR R 1 77 10 I e 7 A5 22 A K DT Py 7] R« B8 5 » Chang
S NHRH ) DUL [25]3F— B B0AIF 7 7ERRAE 2% 2] B B QB AOE A e M A ke . 2R R, ASCA
NTE FER AT 45, R4 BRI (Ambiguity) 4% i & — R B AR A Hf e v . AET PFE A T HERERY Bt
(08 B VEAh S A VS BCAT 55, AR SCKEAE o0 A5 5] N s B 1) 2 2RI Zhrp R IR AR AN 8 TR Bl A T
HERY O ORI AN 1) 27 S B

2.3. HEBRESEHEEEES]

BT A PRV I P A SR A AR B () 52 1, JTSHH ) FER B SR A A5 K E AR A I 75
FBORIREAS . AT MRVIX — A, SCN (Self-Cure Network) [8142H T —FiREA SNk S, it 5
EAR J FE AR IR T = A SR AN e 75 . DMUE [9] ) 22 330I8 i 42908 V8 78 AR 25 70 A7 FE R FH RO AN 5 P Ak
TR RAR B . RUL #E— 35 51 N1 JE T 15 0 (B0 B AN o P 2 S SR SRR I BLAS B . 28T,
RUL = T AR AN 5 14 2% ] (Relative Uncertainty Learning), @it iR & (Mix-up) 5ng L REA X 2
A EEZR. M2 T, RCERHET APSM G T AR P40 B e Yl 1h, BRI A R
T3 ZE A5 R BRI BUAE 73 98 2 THDR W P 3R AT 3 33 ()40, TORR AR B 2R I RRONS B 70 3, FETHEE B Rk
H5 T4, H4h, LDL-ALSG [26]F1 ResMoNet [27]F] k5% 4) #i 2% > (Label Distribution Learning) 4%
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P Am R A A R PR LU B 518 FDRL [28] W38 3 4RpAIE 708855 EE A SRR BT 4 44 ) R A AL

A FRTTERAG T — &Mk, HENfEE R B, SCN T 5 2% R A HE e A AL
BU],  HA SN ZATR = 77 B 5 A B SR EBIREAR; DMUE 5 ZER @R B 70 3C M 4%, 15
YRR RS . SRR, AR APSM 2 — R m . Jo /4 Bl R 48 R RE AR AL
BB B B AR RS AL 18] A B SR HEAT 2 A, I ANE R T IR0 5K 1 Bl S BT IR AR
A% (] LA SE i it ) S B T B SR ST

3. &

FEAT R, AR SCR VEZRIE A T ) B ER I AR S RUAHESE . 5B SRR I 5 20K, SRR IR ANAR
TP AR SR P IR 5 A A R (APSM) B R ARG, o5 48 5 FH T I R R AN S P 3 ot 2 e ) A
REN R

3.1, BkZE
dhst ML A N KB R IIZRAE D = (%, y,)} » ot x RN, y, e (Lo, K} Rt p

(AT R & e RER G AR RS o A STIN H A 2 5 20 — AN RB ST 280 Ah B A5 5 S PRI IS R 40

NTAFIE, ASCRAHER SRS G TS, ] f, . EESRTET, UG
SR —N I E RHIE R & 2, = £, (%) e R® o SRIM, X ARG THERE EG M EERE. Bk, ACEET
W22 JE5IN T APSM 158, HRRAE 2 [A] AR 5 M A ) S 3 A MR A0 A o AR SCRITHRE H D7 vk 1) B A AE 248
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Figure 2. The framework of the proposed method
B 2. KXY EFHER
3.2. IEHIEE R SHIHIEIR

3.2.1. BEERFFHEHRA
N T AR 23 S b T A O A8 SR A 52 14 (Aleatoric Uncertainty), A SCKRRENHE#8 G x, Fom N
TEAERFE S [ P 1 — A2 ot M oA, RS — s . %5040 B & g RO AP 5 22000 2, 52 SLs
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=W, - fH(Xi)+by 1)
s, =W_-f,(x)+b, )

Horv, 0 g ARFEOTREITE SURFAEGRIE W), TIEI TS 2 2, M T R of RERFIER AEE, X
o7 b 2R A b it BRI AL

FARSCHL L, ASORE BT R 48 ) dan AR I 1, TR IFAT I A 3% R (FC), 200 I T 22
{ELAN )7 22 0 D9 T RAE D7 22 (0 A S S OB R e v, AR SCRIINNE $005 %2 s, = log (07 ) > WU S B 7 22
ol =exp(s;) o XFTIEM . SR ERERIE, BARCSTEVNG of ;T TR SO s E R,
HETY R [ 38 R T K of

3.2.2. ESHHETT
BT A E A R B R AR A R, BT R AR, ASCRA T ES AT
(Reparameterization Trick). 7EIZRIEFE, AT 51N —AASL K B e AR B e ~ NV(0, 1) SRR BBl
HURFE 7] & 7, -
Z,=4+eQo, (3)

Hh 0 ForBrummisf. Wi XAT R, BIERREE] T e b, SRR MEXN TS5 4 Mo KRR
AR, AT SR 5 A AR -

3.3. NhEMRmMIRE

SR LR A8 SO 2% B U B R BEAS B 2, BRI TR 7 2 o T O LAV BR BEALME R
M3, ABALIEIRREVER . O 1A 250 F 500t A AN 5 PRSI 75, ASSCEE T Kendall & Gal [22]
FE DU SR B 22 2] B AR 55 h i SE A0 7 05 ZE AN E MEBRAEZY, R & B R 22 FER 70 2R4E55 T,
T T E IR Ly - TEWMIAE, BRANIES Kendall & Gal $2 i} (8] 917 R AL K7 | F
A B, EASTHIRIHT R AE TR 1 %R AE T SR AR — 558 70 AT 55 AL B AR 25 e A 5 T 5
B R . BATIFAR B AR A IOAFE EEAE, T2 TR A S, UEW] 1 XA
Ti ZRIEH A IMABHLH B0 78 21— Ao i N T BUE R BGE B T2, A 20 FER B S iR s iR
T $0L 65l AL

ASSOHg 73 S i JERL O 57 75 22 (Heteroscedastic) i R USR At v el e X126 i MFEA, R BAUE X
y‘j:

’Cce(zi'yi) 1 2

4:T+E|09(0i ) 4)

Hoh, £, RERRERRAE 7, SRR y, 2 IIRIBRAEAS SUBR e . R T R, AR SCRE S5 oo PR A 2

BE (T4 )7 A5 . AR B PR LA, TR T — Aot e L
DﬁﬁmMMMmmnm)£%=%ﬁA@%%ﬁﬁﬁﬁﬁ%ﬁﬁﬁ,ﬁ%%ﬁuﬁﬁEﬁﬁM,

S L MR N TR MEEAR, B A TR BE 02 o SR 4T B B T 128 A R A B B

ST o AL ST 7 M 0
Z)EwﬁﬁmwMMHMnﬁm)?w@ﬂ:ﬁﬁ%ﬁﬁﬁ%ﬁ%,%EﬁﬂﬁﬁﬁW%@ﬁ%$

B E PERAE R BRI LA VA o B R R A TS L g £, IS IR FROAE AR _E R RRAR AN E 17
B X T, APSM ERSAE SR N TEE T HIE LT, B 3IX 0 AR F AR,
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ISR E AT > 5Tk -
3.4. HEEEMER

FEMRBAETIN B, A SOR R BT HALRRE . 1 T B A RO 1, 1R T RO BB A it
ARSCEBARF p ME 2 BRI R I A 258, DA e OB AE . R, O 7 2
o2 T ME N AN E (AT, P TR B ARG B R

4. LBy

AR LA A TT R RO S 1 002 SEAS R VEAl BT g Hh ) APSMREZR . S8 4R A8 P 1A it B A
SIS, HE AT ek iR (SOTA)EAT HEREXT L, o5 J 18 3ok ¥4 Rl ST 960 A 5 1k T MR 20 BT IR N AR
T Py A T AE ML

4.1. WHESE

N T WAE AR B AU SR R, ARSCERE T RANTIZ AR 1 st S R A R AR

1) RAF-DB [2]: X2 — % 29,672 5K FL S tH 505 EHER B KU EoE 48 . b Ed 15,339 5k E{4
T 7 BEARLNG . ZEARENR SRS RELREZ . I LN ARV R AR 75 o

2) AffectNet [3]: X2 H AT SRR IGHIE S, AEET 100 /J5k A BN RS EIER . fEARIR
g, ARy AIHE AN FEAE BT T VTG

AffectNet-7: 15 7 2554 % 4% (Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger). A% %) 28 73
Tk F b M EBUR AT IR, FRAESGIESE Tt

AffectNet-8: £ 7 ZEAEAl 48N 1 “Contempt” (REAR)ZI. T2 8 BFEAKE B> HAERNE 4,
AT 55 S AR b B K 2 AT ATV R FE e SR 6 1 SR A

4.2. SERRYRTS

N1 A ECETFUE IR TR B APSM BEE T IR & T 44, AR SCR PR ResNet-18, ResNet-50 £l
VIT-B 18 TM%%, FH{8 ] ArcFace [29]# MS-Celeb-1M %#E 5 _F i Il 2 A 5 3E 4T W) 4R AL AE G T
A FR I BEASCAE F MTCNIN [3016 T MG 55 F B 224 x 224 1535 . WIZRIATRIME 1 BEHLE B FI/K
PRI B R GR . fE S B0 B I AR ST SRR YR A PyTorch HEZESZEL, {E#5K NVIDIA
RTX 3070 GPU L TIl%. fifbgs XA Adamw, #tVK/IN(Batch Size) A 32, FIUh2ERE N 1 x
1074, FHRH A 5%IE K K% (Cosine Annealing)7E 60 4~ Epoch PIEEJkZE 1 x 1070, 5o fFANAf i 1 & B 7
AR SCKRFEZE B D 150 512,

4.3. 5 SOTA BB

% 1R TR HESIEFRER SOTA JiA1E RAF-DB Al AffectNet £#i4E b ¥k afi %% Lb o
H YA APSM FEHRAE R B N 45 1 1) 2 HR THE T 280 800 1) ResNet-18 1Ry & T4y, A
TR T RE R TE . M EE TR T ZE RAF-DB AV 86.25%(1#ERGZ, I APSM J&PERERK
T+ 2 92.68%, HEFHIE L Fik 6.43%. 5 IFIFEEU) Tl b 25 g 75 AN 2 M SCN [8] (88.14%) 1 DMUE
[O1FHEL, ASCHI TS T B4 78 AffectNet Hdf 45 b AR b T~ 6 sl A% Y 78 32 8005 25 B 70 2% AR
56.97%IERIZ, I APSM JalhERERKTHE 64.85%, IRFHIEE =L 7.88%, H[AFAIET ResNet-18 ()
RAN [22] (59.50%), SCN [8] (60.23%)#1 DMUE [9] (63.11%) #HLt, ASCHJ7EEUE T B#4%, HE%E
HUR A B\ AT %5 AR TS 61.90% A AERT R, M HL T JEAERIAYIRTT T 5.06% (56.84%),
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75T DMUE [1(59.84%)ixX il B T fERFIEZS &4 PRI g 25 e, S5 2 S AN 1 o M 4 ok s SR
A, FEBETT A 2% B E R 5K s (SCN) B I 78 4% 7] 32 38 (DMUE) B A i 24

X FARFAESEEURE /7 5 55 1) ResNet-50, APSM MK IRTE K 1 A2 (3 25 o 76486 FHARRIE SR ARG 77 38
1) ResNet-50 1E A HE TR, ARSCHINERILHE T e Pt aedert. AL T HEUERAY/E RAF-DB |
90.24%IHERIZR, M APSM Ja Mk GEIRTH 2 92.95%, $ETHIEE A 2.71%. 5 FFEHET ResNet-50 ZEH4 1)
EAC [12] (89.99%) 11 DACL [23] (87.78%)#HLL, AL LA | fiH. 7E AffectNet 244 1, AH
P TR A i R A B 2 b 63.36% HITERA, I APSM JEVEREERTH & 66.12%, fRFHIEEE
2.76%, =T EAC (65.32%)F1 DACL (65.20%). 4 7R 1% 504 5 10 S e (1) )\ 73 SRAT 55 AR ZE RS T
64.50%FIHER S, ML TIERAR T T 4.61% (59.89%). IXiER] T BIERT TR Z M, APSM % 1)
TE 253 A7t B A S R AR AS T 2 2 A ARSI AR AR R 0L S 1, AH BE T 25 T R BRVE 2 T (EAC) B
PERFIE S S (DACL) I /772, BLEETERFAE 2 A A AAN A 5 M 50 ) B3 A 28

I JETEAE A ViT-Base 1E B TMZ I, ARSI 72 R HbER AN 1 AR /MREA S F AR . AH LT
FERIRISE RAF-DB Y 87.22%1JHERTR, I APSM JG PERERRTF & 93.21%, $2FH1i ik 5.99%.
5E114%F FER #3t%) TransFER [7] (90.91%), MVT [24] (88.62%)#11 Face2Exp [25] (88.54%)A1 VTFF
[26] (88.14%)AH L, ASCHIIEHAS T —E W%, TE AffectNet 4L b, ML T HEMERTE ZHIEE L
432 FAL 60.25% TR, I APSM JG P RESETH 2 66.70%, & THIR & Fiik 6.45%, 23 & T TransFER
(66.23%) MVT (64.57%). VTFF (61.85%)#1 Face2Exp (64.23%). L4 7% 4 1 e HE ) )\ 73 2K 4E 45 E
ARIER AT T 63.15% I AERG=E, AHLL T IEHEBRY SR TE T 5.16% (57.99%), tH=T MVT [#1(61.40%). X
W] T APSM R (R AN E Al i1 Transformer $245 7SS IR ME, 78349 1 —Fhoi /7 1 15 )
T B, A TE R OB T Z5 (45 0 N 0 RE 68 Bk 152 T 52 2% (TR & 2244 (TransFER) A1l 22 #E &1 75 V%
(MVT).

Table 1. APSM-integrated backbones: Performance vs. SOTA on RAF-DB and AffectNet
F 1. £ RAF-DB 70 AffectNet £, TEEFTREEEM APSM ERYIEEER B ETTLLEER

Backbone Method Source RAF-DB Aff-7 Aff-8

Baseline - 86.25 56.97 56.84
SCN [8] CVPR'20 88.14 60.23

ResNet-18 DMUE [9] CVPR21 89.42 63.11 59.84
RAN [31] TIP'20 86.90 59.50

Ours (R-18 + APSM) - 92.68 64.85 61.90

Baseline - 90.24 63.36 59.89
ResNet-50 EAC [12] CVPR'22 89.99 65.32
DACL [32] WACV'21 87.78 65.20

Ours (R-50 + APSM) - 92.95 66.12 64.50

Baseline ICLR21 87.22 60.25 57.99
TransFER [7] ICCV'21 90.91 66.23

ViT-Base MVT [33] CVPR'21 88.62 64.57 61.40
Face2Exp [34] CVPR'22 88.54 64.23
VTFF [35] TAC21 88.14 61.85

Ours (ViT-B + APSM) - 93.21 66.70 63.15
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4.4. HRESELE

N TIRNEIHT APSM HESE % 20 A i A SZ o Bk A LW RIVE A, IFAEAS R 4849 R 3E oz A, AR
7E RAF-DB %4l 48 AT 7 VFANATH SESS . a5k 2 B, ASCKSeit i B oy 12 A IR(N, ~ N, ),
# | ResNet-18. ResNet-50 F ViT-Base =fh i T M. Hr, PE ARFAMEZ ik A (Probabilistic Embed-
ding), USL AREEA & P T35 2% (Uncertainty Suppression Loss).

Table 2. Ablation study of different module combinations

2. BERBHRSNER

Backbone Net PE USL RAF-DB (%) Gain
N, x x 88.36
N, N x 89.65 +1.29%
ResNet-18
N, x N 91.12 +2.76%
N, N N 92.68 +4.32%
N x X 90.24
N v x 91.45 +1.21%
ResNet-50
N, X N 91.88 +1.64%
N, v N 92.95 +2.71%
N, X X 88.10
Ny N x 90.85 +2.75%
ViT-Base
Ny x N 91.40 +3.30%
N, v N 93.21 +5.11%

4.4.1. PE HEIRAVTHRLSCIE

I AR ) PE IR ( N, N, Ny )5 & B TN B AR RY (N, NG, NG ), BRATTILEE 1 2
AT —HEMIRTE . £E ResNet-18 (N, ) T HERAZE M\ 88.36%$2 Tt 22 89.65%, 17 Hy+1.29%. 7E ResNet-
50 (N ) HERZR M 90.24% 4R T+ 91.45%, 125 4+1.21%. )5 {E ViT-Base (N, )R M 88.10%3%
FHZ 90.85%, 147 +2.75%. XLHEHEL], PE HORMIRHE S MIBENLRFENLH] 7 24 1A R ke s
W5, Hoh VIT SRAF MR THEOR(1.75%), UEBA T HLHI A 2% fif Transformer ZER7E/INEA 1R 0
A, PLViT-Base A, I PE JG(N,), HEMIRSRTE T 1.75%. XEY], Eid HE SR IGERE
2 A 5N B 0 AR 2 ~ N (1,07 APSM BN SEBL T — P B s RS AE B 58 RIS A BN LA 5l
LA R 26 25 5] B N 1) 4 SR RRAE 20 A, T ARSEIC AR TS R 8 AR A, AT A MR 1 Vision Transformer
TEREAH S5/ B 5 125 5 i 10l 45 10 1)

4.4.2. USL #EIRAVTHRLSCIS

TR ST 45 AR, USL Xt HERERIIR TR B T B EBEMIEN o XL B A USL YA Y
(NG NG NG ) S B UERLRL, O 25 05 5 2538 = T (£ PE. ResNet-18 (N;): #ERIZRELTE & 91.12%, 7
K7 +2.76% K E KEEFE. ResNet-50 (N, ): #ERAIZRIES 2 91.88%, M§7i N+1.64%. ViT-Base (N};): it
iR IL$] 91.40%, 3254+3.30%. 7 ResNet-18 I, {UfEH USL (N, K T 2.76%M & 24187+, 18
FRR S b M 25 T S8R AR, W5 2 SISO UG RIE 75 bR 2 TPt . ASCHE I USL bk
RACRAEAF T B 25 0 TR PR PO 0% ) r R T A D 28 2R KR AR T BE R, IR T AR g 4t AT DA
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SR A3 R TP TESNAS EINATT TH, USL @ FINRE AR (1 75 22 o SR 25 PR = AN 8 PEREARTE A 2R
R B, A TR T TR AR 46 2 ST OB AR T, AT 51 AR i T B T B R A AR
FEAR, KIE$TH T 70 Rt .
4.4.3. BEUERISEE

2 EE$H PE A1 USL BF (N, N, Ny, )s BT B TMGER] T R atiae, SR Ee 7
ML — A E . EREAMZ ResNet-18 [FIif# A SCHR H B AMBREL S, B 7E ARG 45 I
MR R E K . SRR N, SEIL T 4.32% (13 25, 7E RAF-DB % 4 LR 215 5] 92.68%.

7t ResNet-50 [l {fiH USL Al PE PIAMEHRJS (N, )TE RAF-DB £di4E b ki %61k F1] 92.95%, 5L
LT +2.71% MR K A . SRS ZY N, 32T T 5.11%, 1A% 93.21%. 7E[FIH# A PE A USL i
TR 5 AR AR AR T SR AT AT — AN SEER R4S 31 T S AP I RCR IR T, $EBH T PE A1 USL JE A T #24F
(L ANSN o TEASCEZHEM T, PE §1 BT AE U2 A I RFAIE 20 A AR BRI TE 2 0], Bk S i 2R I 2R BB
N R ARG DL 17 USL W 67 ST 29 SRAFAE L S, B (h A2 A A p i v 7 ZE M P i 5 o XM AR JORT 20 3R
R ] (R DRI ZE CNIN A1 Transformer 4844 B3R I T 3 K10 &4k, 1E T APSM J&—A~il 1
BRI PR RE LA

4.5. AL

o
o? =0.05 0?2 =0.03
(a) Reliable Images (Low Uncertainty)

0?2 =1.20 g2 =155

(b) Ambiguous Images (High Uncertainty)

02=0.95

Figure 3. Diagram of visualization results

B 3. LSRR

N T B APSM R BRSE 15 B IE B4 BRI Bt B SCYERIRE T, AR SCAE ] 3 PO AR TN A ANl
SEVE o BEAT T AIALAL BT . A5 SO RAF-DB WIS it T PRALAA AR TEIRE A : (a) B & il & i 1
rEEEREAS, DU (b) RS 12 B sl S R S I R BOUREAS . &L 3(a) T, X TR HRAE
W OGRS HICER g, BRI K7 Z AR o? <0.05). IXRHIRAL X LekE A 53 11
FERFE R () TR AR s, Rl et XML T, Kﬁ%%ﬁ%i)&i‘jﬁﬁitPE’ﬂﬁélﬁriz”z‘i—‘f}?j(,
TR ASE AR 5 73] T 2 e B R R AR AAG 73 S 5 . A, &) 3(b) B, TGS | - B (5 —
B~ ™ (R SO (55 — 51 B IR 28 25 (5 =) S BOR TS XELLHARIFE A, APSM B 34 1 R i 075
Zl(o® >0.9). IXF i 77 ZE TR BB AR DA #E 2) T BOR A AR e v, T DA IBCUREA AT
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368 S o AR A SO 2 R M2 S L, :2%248 +%|no-2 VBRI 0 4 B Bh A A e85 2 £, AL,

KRR, AR AR fE X IR PR MR, A RMAT XA TN, EERABL AR
BRI ROR A R . PTRAGEE AT I HER] T APSM J& — A BA i B2 T R 1 IR, B REE IR
B XA 5 55 X 0 B RO EAT IX 73 ARG BB R A, I s b 0 A TR ) R ek ) 2 T SES

4.6. FHEZE SAMEEG T 24

N T N A R AL SR APSM XHRHE 2 (B R AAE R, DARANH B HEAG TH I Ge ik 52 L, AR
BT TN RS e
4.6.1. $FEZE B 5345 ATAR AL (t-SNE)

Kl 4 JoR TAEAEFH APSM BEHLHT S, ResNet-18 B+ M4 7E RAF-DB R4 L 1) t-SNE HF1iE il #i 4L
455, Baseline (14 4(a)): TEARNMIA APSM I, A[EIZEAIMIRAGFEEDL FUCAAETEIR SIS, HiFF
TEREECNRAT . XK ALK B AT A BRIFEA, SEEEMAIAL SR . Ours (4 4(b)): 5l APSM J&,
FRAEFE RO BB IR N Bk 2RI o Bk, B ENE, TP OREARZ Natfie hreA, M
JE AR 2B £ 10 FEAL I BORIRE AR 7] 1 20 A0 (A S (@ AN E VEIXI) . IXIER] T APSM @i BEZR RN,
PRI EE AL T ARFAER Y, (AR R 8 78 DRI FE A I AELE, T A SR AR R [ R 2

(a) Baseline (Deterministic) t-SNE (b) Ours (Probabilistic APSM) t-SNE

° e Angry
® e Disgust
e Fear

e Happy
= -~ o Sad
e Angry e Fear e Happy o Sad o Surprise o Surprise
e Disgust e Hanst e Neutral © o Neutral
(a) Baseline (Deterministic) t-SNE (b) Ours (Probabilistic APSM) t-SNE

Figure 4. Visualization comparison of t-SNE feature space distributions between the Baseline (a) and our
APSM method (b) on the RAF-DB dataset
4. BEER(Q) 54T APSM 7534 (b)7E RAF-DB $1BE FAY t-SNE 4HEZS (8] 9 F AT AL XTEE

4.6.2. FAEMSTNERR LR EGRBAMEXE

AT YRAETIIN Ty 72 o 2 15 BUSKE SRE T REAR (R R HERRE , FRATI i T RAF-DB IR i 3 REA 1
TUANHA 5 P S AR 3 SR A 26 2 IR DG R (3] 5(a) s ). Geit 2k o, BlAE T AN e 1k o (3
BRI 40 2V R I R N R . F o <O.LIMRAN i PR DX IR), RS HE A %6 230 98%; 1 7
o’ > 0.8 [ m XA, MR ERC. X R GAHRYER Y], APSM FLTHuRE U 45 iR 1K A BS Be Ak A T 7
ZfH.

BEAh, BADBEDHT T A E VS BRI I 58 &R (W 5(D)) o FATTA gt [ iR B R A A [+
EEA51(0%~50%) I BE LI £ B . S5 5R TR, PR T AN A 1 11k it 5 A 14 B A R 8 i 2 MRS 4. I e b
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(a) Accuracy vs. Uncertainty

Occlusion Ratio (%)
(b) Uncertainty vs. Occlusion

Figure 5. Quantitative statistical analysis: (a) Strong negative correlation between predicted uncertainty intervals and
classification accuracy; (b) Linear positive correlation between image occlusion ratios and average predicted uncertainty

E 5 EEHHH: (@) FUNFAHEMXESKRESIERREBOERX; () BREHLHSKREHEFHR
HEMEL&MEERX

4.7. RBRIEER: #1615 KM B P&

B 28 T AN e M B BN v, — AN LR ARG R A A R 75 2 R A e BE AN B S A AR (High
Uncertainty), 1306 AL B ARAOR(E A3 & B 5 J2 B R HERE 48 (Hard Samples) R & o 7EA LI 5L
5o, FRATTHLER B4 2% R H5 1 1 AT %Iog o RLR T OCHR ISP AR FH o 0 SR RS BT X 15 #45  Bp H

T TE BR K1 77 22 R R 5 (R L, /20 = 0), I8 ENILIT log o 525 Uk K S EUR R R & B
i, AR TE AR R DA BRI 5 RS2 48 R E AR A 7 22 2 [ SR AN 3947 s . IX R, APSM JF
EE H EF A BIREA, T2 A TEREAR 5 SO A S T0 1508 1 B R AE SR A A pR i 7 2 e R PR L
R o ST A 2 B M A5 AT 2 ST e A FE A (Hard but Informative), 587K AR 2 2RI IT AL 11, SR AR
Oy FRTE, TR G T SN EE BB ) R U

5. &g

AL FLSCHH S AR TR (FER) Hh 3 i A7 75 0 B 28 M 75 RH 0 5 SOV [l R, 2t 1 — o 8t H.
I A ECSUR SN AR S (APSM) . 5 LA 7 VEMCORUIR 2% IR AR A5 43 A 2 2] 8RR JIHLEIAN IR, AR SCMRFE
LR Z A R, BT DU ANA s R B AL, dad 5] ABEEE B\ (Probabilistic Embedding) 4 & 14 1)
REAE AR IR S o AR B AL AS &, FF BTt T ANH 8 1 3298045 2% (Uncertainty Suppression Loss) >3]
B TREARE ., AW 220X — MR HE LY e 2= RS U0 U, IR B 7 E RS — PR
WA T, LRI RS AER B ARG 70T .
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