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Abstract

Maize yield prediction plays an important role in agricultural production decision-making and food
security assurance. To address the limitations of traditional machine learning models in modeling
nonlinear characteristics and long-term dependencies in agricultural time series, as well as the
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problem of limited agricultural statistical samples, this study takes maize yield data from Hebei
Province as the research object and develops a maize yield prediction method integrating deep
learning and ensemble learning. First, the influencing factors of maize yield are comprehensively
evaluated using grey relational analysis, multivariate correlation analysis, and machine learning-
based feature selection methods. On this basis, a deep prediction model integrating continuous
wavelet transform (CWT), convolutional neural networks (CNN), bidirectional long short-term
memory networks (BiLSTM), and a Transformer attention mechanism is proposed, hereinafter re-
ferred to as CLT-Net. Furthermore, a Stacking ensemble prediction model with a residual-aware dy-
namic weighting mechanism is introduced, and an LSTM-optimized conditional generative adver-
sarial network (LSTM-CGAN) is employed to augment the training samples. Experimental results
show that, compared with traditional models such as backpropagation neural networks and sup-
port vector machines, CLT-Net exhibits significantly superior prediction accuracy and stability. The
ensemble model combined with LSTM-CGAN-based data augmentation achieves a maximum predic-
tion accuracy of 99.58%. The results indicate that the proposed method demonstrates strong pre-
dictive performance and robustness in maize yield prediction.
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Table 1. Partial presentation of the preprocessed data

F 1 FALEERERS BIER
AWHMESI ) ALEME ARERIAR B E OREMER OTE

F AR

(i TI) (fz.1) (@RALD) (ATTIA ) (A (Jimg)
1982 ik 1355.53 96.21 3561.13 3496.8 2073.3 725
1983 A4k 1578.53 117.55 3576.6 3449.7 2001.6 690.5
1984 JmibE 1830.29 126.49 3584.8 3523.2 1816.5 640
2021 b 8096.81 3413.34 3952.24 5983.51 345411 2066.77
2022 Mk 8249.08 3645.02 4102.86 6061.3 3455.87 2094.7
2023 b 8403.77 4035.67 4122 5902.1 3442.24 2014.28

22. EXRFEEFWEAEIH

SRy G AN A B 55 AH DG AR B TS B M BB AR T, AR AK€ OCER 73 4T (GRA) . Pearson AH ¢
Z¥. Spearman < 2%, Kendall 155 &%, Lasso 715 2 J5 Z MK Bl T-(VIF) M2 2 R ik, stk
PRI N R AT AT . SR REMBUL R G, BRIEME RN HKE6]. Bl s a2
FASHE W79, P AN [R) 1 5 220 i G20 DR 3R 5 ROK = 2 AR DG 2R, AT 4 v R A1 i &6 R 7 mT
HfaErt,

NEMERAFF RS KB M AR R, KRB R R A Ot 48 Rk AT v AL,
%2 R, SERERY, RAHAR. ARGEEA. LIk RS SRR S AR RS
BOmA M, AR 4L CLT-Net PR B AL K 41 A TS R AL S8 — 3 N RRIE 25 [A]

Table 2. Correlation degree of each factor

F2 BREREXE
EZ S S VAT AV S AR IEHEAE RNHRE HUEs 2R

AR E 0.854 0.794 0.778 0.772 0.756 0.666
AN B THIAR FORFEF AR VeSSV EZ0PNE b
AR E 0.609 0.609 0.603 0.601 0.361
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X ECHELR, A SCUR N A B A AR A B — PR AR R AT R S B IX e R R B iR gL as 22 S0 T
%, WAEIE RS2 N T I [ P 21 T PR B2 2 ST

TEARGENL AR SRR TG T, AR T 2 el BP M fZE . SCRFAIENL(SVM). BENLARM
(RF). MR (DT). BEEEFETHR W (GBDT) A LUK [ A (Ridge) S A . 13 MY #F AL PRAR R 15 R AN £
REAE [R5 ) BT TR A — 2 0%, B 2 N T A BT 7E[7] -

FE LV PP PR T3 1, 33— 20 5N R HEIZ 48 (LSTM) AT T2 75 24 52 0 (GRUE TR 2 2
FLAAIY, DASE 5 0f I (] P A A OR AR IR B RE 0 [8] . [AIY, 58 3] XGBoost £ I 4k B AR AL
AHJTH R, WEEESEORIN XGBoost # A Jyxf LU,

JITAS S T A R P A R B B R 2 7 3. SRR D AN BUAL B RS R REAT ISR 50, RS
— VPR bR A R AT IR REVRAY,  DLORIERS RN B S R PR 57T B [9]. b3 L — AR 0t L
XM, J9Jn 8 CLT-Net R TR f2 20 & PN A R PR RESRTHR S ikt . 2R, EABIRIEZ R
FEARFAE R A MM 7 TP A7 AE SR B, D s o A 3 B LRI BE 7 AR FE TR AR Y
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Figure 1. Schematic architecture of the CLT-Net deep prediction model
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Figure 2. Schematic structure of the improved Stacking ensemble prediction model
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Figure 3. Structure of the LSTM-CGAN data augmentation model: generator and discriminator
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5.1. ARIMRBTMEGRITEE

MR ZE MRS AR 22 S B AR FRUMIARS B S5 AN 7] £ FE VP AS R A 1 R, AR SOR T3 4650052 22 (MAE) |
BT HAR 2 (RMSE) . ~F-X) 465 17 43 bz 25 (MAPE) AT A 6 2 (Accuracy) fE N M HE bR, Hrb Accuracy
TE SN TR 72 /N SEBRE10% FIREA LU o AN 5] R0 TR (1) oK 7= Tl 4 SR % bt 36 3 firo . 45 1

W, CLT-Net ££ UMK FEAIRS E 1 77 B0 Ttk e o —

Table 3. Comparison of prediction results across different single models

3. TR —FUNRE A TN LE R 3t

(e} MAE RMSE MAPE Accuracy
BP 265.78 267.64 13.02% 86.98%
SVM 276.27 312.77 13.44% 86.56%
RF 729.05 730.95 35.65% 64.35%
DT 864.75 865.59 42.31% 57.69%
GBDT 231.57 234.12 11.66% 88.34%
Ridge 315.93 317.15 15.45% 84.55%
LSTM 362.67 366.27 17.15% 82.85%
GRU 278.82 279.39 14.08% 85.92%
XGBoost 347.55 350.16 16.98% 83.02%
CLT-Net 185.12 198.76 8.01% 90.99%

5.2. CLT-Net jEmbscIg

o AN [ TSR 1 GE HEAT X6 B 23 #r, T LAF HY CLT-Net 78 To 2K 7 B TS FE2 A RS i 1 7 T 2 R B
B AR 3 SR, CLT-Net & 2H bt Hon AL P e 1 BAR STRRAT) A 06 B3k — 0 0 i AN BGHIE . Ik g CLT-
Net (I ALSLES, DALRG AL S HAE R /E

1 R S 56 7 A% SR FH 5 O SR IR () 0 B SRR L B AR B T R AP Fe AR R R, IR S e
RS TR R AT Rl 53, O 4 30 B B[R] A, TN GRER 2 Ja I L SEREAR K Bl FERRRL S5 M T 1T, AL
PR T DURAS A N4 S5 T LLaedt: O 5880 CLT-Net B8, @ ERFRIEL/NEALH: CWT [
. @ ZBk Transformer VR AIHLHI R, @ LB HIICIZ M4 BILSTM [ AL, R 25 4544
ZRA, HRNGSEOEBRFF 3, SHEAEMFZM NEAT IS S IR, st s Rk 4 Fos.

Table 4. Ablation experiment results
4. HRALIGER

e CWT CNN Transformer BiLSTM MAE RMSE MAPE Accuracy
1 \ Y v v 185.12 198.76 8.01% 90.99%
2 Y v v 271.34 274.78 14.27% 85.73%
3 v \ v 268.89 307.15 12.68% 87.32%
4 v \ v 698.45 704.36 25.42% 74.58%
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Table 5. Comparison of ensemble model prediction performance with and without data augmentation
= 5. BUEIESRRIEE A RETUN M REXTEE

Y MAE RMSE MAPE Accuracy
CLT-Net + SVM—GBDT 101.27 115.53 4.91% 95.09%
CGAN: CLT-Net + SVM—GBDT 8.32 8.50 0.41% 99.59%
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