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Abstract

Autonomous Underwater Vehicles (AUVs) are a major means of ocean exploration and development.
AUVs are equipped with advanced technologies such as navigation, control, communications, and
sensors, enabling a qualitative leap in human understanding of the ocean. The control system is the
core component of underwater robotic arms, and its performance directly affects the stability and
reliability of their operation. This briefly introduces several main control methods of AUVs, provid-

MESIF: EBUR, TR, RIEW, FEE. BIGK T AL AT B B ER % f SR BT U ZRR ). 37 RS 5 HE,
2026, 15(1): 56-61. DOI: 10.12677/dsc.2026.151005


https://www.hanspub.org/journal/dsc
https://doi.org/10.12677/dsc.2026.151005
https://doi.org/10.12677/dsc.2026.151005
https://www.hanspub.org/

EER 5

ing valuable reference for the selection of motion control approaches, the design of controllers, and
the design of control systems.
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AR, BEAE 3R E L SRR AW AR, HEEVE N — AN E K R SR R, HIT R SR AR E
KUTR R BRI AR R ENER . ARk, R EiEE, e EEst, L, EmT
REHP HRZEMASEFGE I “T =017 KRSt eyt 72— DR RIEEST,
VISEARY Mg F R PR 2, i BRI & . RHER AR~ ), R R R0 IR
T FERN I O ANBHEL BIRT . BRI RIS, JRIE R — AN SR R R [, SR [E R b
FES PRI, A USRI B DRI R, DA SR E IR BT K TF RN 44 AL
)7

Bk, RS R o RS B A AT . BAT, KIS AT R Z AR ThEE. )
Wi BN S 0 & 2 [ T84z, TE NK AL A AT 2 N iE 45 K R HL#% A (Remotely Operated Vehicles, ROV)
1 EVR/K FHLEE A (Autonomous Underwater Vehicle, AUV). 5 ROV ML, AUV 5 — &5 L L 5,
WNESHTEE, TRREKR, LRwss, PahRiE, AFHEKESCRERS, BB, BT 4R,
AUV MNHERIRT, EEHFUSHE. KTFlE T, FECE. M. EHRE. g, KES,
Kk, ATIREEFEE, RS R AUV. AUV | Z N THEEREE . 8RS 54
oo R IR SR A BEER SRR R A

AUV HIBIEFE I R Gia HAZ 05y, HIRe Rl AR RIRMG . /K THLE N EESEIL 2 Fh & 2% 118 3
Mizzh, BAEAM R AR R P3G E. A CER T AUV FPUZEE BRI oR 1) R IR .

2. AUV LR R ERBRITHI H Z AR IR

T AUV ARBUN RN, 220 BN, HHEEh 2O R %, ATl AUV B &
Gttt oy e, H B PID 42 5 2802 A ME RGN AEA, X M RGO B, BB TKT
LN 6 N E HERAELIE R SE, PID 42685 A REAR I L] AUV H)iZ35).

£ 80 AR, HIT UM ENLE AR N LR BEER AR R R, VF2 R 2 T B 3 2 5 AT 240
MEBREAAE . 0 E G N, TR, B, PR IERI].

2.1. BT

TR G PERR — A B R . GE TR, R NESd LR (2] [3 1M R R A E RSt HA R
THCHEAEREYE, AR AL B R 2R AR 2t R e BT W A PR . SCRR[4 16 & 8 T PERTUR Jnis sl
KT B A R ER BRI AT T WETE, TR AT TR, RV i SR A AR D S AR S A ) R
ERAMEF I OUEANE, BB S ARSI AME 26 2 SRR ] R R BRAR K2, iy HL 3 20 2
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TEIFIE AR KB -

N T IBNERENA R GEIREI, Levant [S] [6]3 1Y 1 —Fh — X SR Bl 8T 7 ik AR, 205955
FERE R IR &, W] LA BOhIN T REIR(7] (8], B30, LESCHR[O1-[11]H, K i i 5 A58
RIS 7, BB R e IR Al S T s AR AP A R T 90, CRER I M A O A L, AL Res
FE— AL B ATRIB ER .

2.2. HEZMEIZH

(I s i o 220 X 2% O PR AN T 5 F SR PR A2 i R Ao 28 D 28 AR SR i v 2R SRR TR ARE B L
AR BEFE T IEAE K P LA N RIS BB R 1 2]h 153 1) Z AR« STHR[ 13 15R A4 1 sl A X
PONER, IR EEEXEERIML &, DUA R FERREEMAEN H 1. B s 2R BRIt T
Pk, EREHEAEATERTEILT, HREZ TR ERULE M, AL AR SERR R 52 2R K
(RIFRAI[3] -

2.3, {REFEE

AR FHIN 4% 1) 5 5 4B AR A L JREN AN B IE =30 73, fEAL P 2 AT A LR R 4807 T
RE LR

7R SRR 1 A SR T A o) T AR AR 45 S SR, ARSI tanh pROECER AR T AR G A
PRI sign BREL A MEEIK T PHRILS, AR T AUV R SMET I, VIRetR Rrmks EEAN &
Ptk . BEFESE[1STBETE 1 — Al T ik AR i OS2 U0 425 fh) A0 ik o AR 2 kT UL #58 O AR 0 T A
PR JR IR A BRI ) s, 2 SV TN 00 AR R ST AR A B DA S i) 2 S S, B S AR
IREEE,  DLHR LA R T2 il O DL AL SR AR R, AL 28 N DA B AR fo DU PS8 ST IS R o7 22 P B
15 AUV BEAEIIRAE R A T P01 T B RAF AP BRER R

3. AUV filrBRER R AR HIE AR BIR

Sob(adE. e Sim) )2 Kanellakopoulos [16] [17]8SeHE T, 1M 5B £ ) 2 F2 il B AR R W &
JERIP“M o ST 12 SEEAE T ) b (0 B T BRRGBR 02, A SO I [ 18] [19]. MZMIZE4EHI[20] [21]. T
B S5 . [ R LS 2 AT DU G 250 BR R R 22 1 e 4 i B, MM — P e BRER IR 2 H X
SRR, I HEGAHBO TSR, AAEH 8 MsEm Rt 4k,

3.1. R&#*%

Fob iR —MARE A M IS, EREA SO K T AR Eh A L B AL ER B . SCRR[22)8F 7T 11
RFFEIRBNZFAE T, BB HOR AR T BRI PULERER W 8, R OB R MR v K%, fiz
EHFE AT 2K N AR S SEA, Wi so ik TR S AR E M. SCRR[23]28 T CAT B 4 4,
Pt T — AT ROP TTARIK T LGS N =GR B ER P 88 BT T, 1207 VR AT DA R BR KR Y
FH, RN AT UUV-HUGIN 88, SCHR[24 1R M vh R B3 SOk, SEIRRss
Jrid, WP BRI H SR AT 1T o STHR[25 19 S8 AR T AR AR 2 1 B 1 FR 53R AN K Bl 3 I A 0] AT
BRERFEA F20 ) 20t v R P A SR B AN TR AT I I 2 0 BT, A AUV EASHOIRAS T B
B ER . BIRSOD IR RBARL ML R B B Z 4, Bl TAESNEPE G PR A E KR
R, A1 T b A R AU A DA i A A PR S O A H 2 B R G R 2 AR
WK, XEIER T CUHEARSE” IR D Swaroop [26155 B e HY T —FRET I R ALK — 1),
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3.2. FIEWMSEHAR

BT K T ERIMEE, fAEHRE 2 RFIR T, TR 85 Be 0t v I T DLt AT A Ramdl, (H it
ARATIIEHIBORBA PR s, BT P s EoRSE 4t 1 55 —F Bk .

FRAKAE28]F T — b G BT YU N8 R RO A 7 3%, Rl S I T A R Ge i, %
T B ERNOULIN S BEAT A T, IR S PR OREh 834 LE MU RN ) R, et T ARBNEN 1 R G R MARR
BB T RO 48, 1S AUV e AR ERER BUE S8, H AR BBt TR . sl E 4 [29]
B0 AVU 7K R = 4EUEBRER P, Beit 1 — Pk T AR 2 T PEOLIN 2% () BOb i B i 4%, JE AN
B AR, B NDO W EE T PEEAT A TH A o B a7 BOP VAR R A B S NSRS, R
NDO Bt obigtizlas, ARG T AUV KT &N,

4. AUV fis iR ER H i I B AN R IR

IRFESRAL A ST HEN . BRI EE W T AUV Rz shiEsimr s, 22 ki M R G AN 0E R
TS BRARF IR -
4.1. FEBLES

TR PE BRAL 52 ST BV AR P 2 ) IR BE J1 AN a4k 2 2] I W SR RE 15 BE &, AT H T AUV AT 8%
IR b, AT HSRIIZE AUV (13 )1 580,

FEHAZEBOWIR T T HRE AL S BIER) AUV IR, RRME 7R T 5 A (actor) 13
W (critic) PR N 2%, BT LLEATAT 88 3 3222 20 51 S BEO7 A T N TEALH AUV RS R 2L Al
g1, e DR A TR AN s R PR B R ZE

Sun 253178 F VR B i o2 MR SRS A6 B2 5911 5 1 AUV B 1R R S - IREGM e &, HdshiE
B AUV [UHE IR, RS AUV BGEBEFAEE . Z AR N T BENLF-HE, A 75 G o
AN ERE AUV BRI R 400 B AT eE

4.2. BiENIFH

Zhang FF[321R M B G NBOBZ I S0 AT EVETPE, IR AR R ST E S
TR R 1 ST\ EE R R, DUE RN RS A E R . HEANEIE BT tan BYfEAS Lyapunov
PRBUEEE R GUR S Z A AR, (HARZE AN TR .

5. &t

eI AR, B EK AT AUVIE A NRIRR R R FFRK T BRI LR, SCal T
PR K. WHIRIEBIFENIAL 100 KIFERIIPIE 2K, BIEP A 1000 K. 3000 K. 6000 K
Y& TIRGIRM R B, AUV AMUEAR 7 A FR B A, SR Ih & AR 0K 78 5 X . Ik
Bt A RS K SNSRI RS X BRI AR, MUZE T AUV A EH
BhOREVR . SFATSEEERRER FRRS A, SEEBE T A KR BEIR AR . PR M S A A% oA

T, AUV IESE KNS 2B 0 X fa A sl sk, Mt g ip— el b flE g U =X,
PASAR A T A5 B SRR L BEUR BN A o — AR LA X, i 20 3t — 254 e B R 12 5 S B 3
ET ik, AUV RS SIS BAR AR R R RN SR KBTI R SR th
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i aERER R, H2 B0 s RIS I HERE B ), PR T AR AT R L. Rk, SR
BHUTAHBESEILZ B d EIE S R DR R OV BT . R R HERE SR S i, TR E
T et e A5 IR BE R BAE Ty, FIERRIRBERERI RIS, SCEL AUV M RENLEN. TR, Bt
BAEMR B R ML, “RIE) AUV (EIRIN AR T A& Bk th S ] 7 SRR BOIZ O S ——1%
BORBEA RS0 SR I AR PR R 1T, G i i) S50k B th SR L R R, AR R BB AUV 72
AL E 2RO T, HARIRIFRE  RHERINUT 235, NIRIhAEZ A i EshiR fnl Fe R Best,
“EE G AR LA BT I RE PSRRI BRI AR BORBIE, RS AUV BUTHL I Eh AL
e SER IR RE A BT T R BRISTIAEE R, [FID e T REPLE IR S5 RS HERR BRI, AESRTT
FiLAT RAEAE R — D PR RERE, Se SRR A KRR K -

SO, ERHEE ] EE MR RS B BRI AUV SR, RS I RIS R
T, AR G R S RRIA — R AESS, RIEBORE G AUV KR REE . XA H & A T RVE
HEVERE RN KIS R BN 2 5155, @2 AUV 7) TIME, wTRZFRIHELEE. [N, &
AR A FVEVIREE . AR5 2K, RIGHERCZ A28 AUV TR FIVEMV BN, SEBME VIR FE . BT
BRI Z RO, MOARK AUV 18345 | Uk ) =2 R e 7 M.
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