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摘  要 

汽车悬架系统是决定车辆平顺性、操纵稳定性及行驶舒适性的核心部件。为对比不同控制策略对主动悬

架的控制效果，本文以1/4主动悬架系统为研究对象，基于牛顿第二定律建立其动力学微分方程，并进一

步推导得到状态空间方程，且验证了系统的能控性与能观性。利用MATLAB/Simulink仿真软件搭建仿真

环境，以白噪声信号模拟随机路面输入，分别设计PID控制策略与LQR最优控制策略，围绕车身加速度、

悬架动挠度及轮胎动位移三大核心评价指标，对比分析两种控制策略的仿真结果，明确二者在主动悬架

控制中的性能优势差异，为悬架控制策略的优化选择提供参考。 
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Abstract 
The automotive suspension system is a core component that determines vehicle ride comfort, han-
dling stability, and driving smoothness. To compare the control effects of different control strate-
gies on active suspensions, this study takes a 1/4 active suspension system as the research object. 
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Dynamic differential equations are established based on Newton’s second law, and the state-space 
equations are further derived with verification of the system’s controllability and observability. Us-
ing MATLAB/Simulink simulation software to build the simulation environment, white noise sig-
nals are adopted to simulate random road inputs. PID control strategy and LQR optimal control 
strategy are designed respectively. Centering on three core evaluation indicators—body accelera-
tion, suspension dynamic deflection, and tire dynamic displacement—the simulation results of the 
two control strategies are compared and analyzed. The differences in performance advantages be-
tween the two in active suspension control are clarified, providing a reference for the optimal se-
lection of suspension control strategies. 
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1. 引言 

随着汽车智能化、网联化技术的快速发展，用户对车辆行驶平顺性、操纵稳定性及乘坐舒适性的要

求愈发严苛[1] [2]。汽车悬架系统作为连接车身与车轮的核心承载部件，其性能直接决定了路面对车辆的

冲击缓冲效果、车身振动抑制能力，是保障行车安全与驾乘体验的关键环节[2] [3]。在复杂多变的行驶路

况下，悬架系统需实时平衡路面激励吸收与车身姿态控制，其控制策略的合理性对整车性能提升具有决

定性意义[4] [5]。 
根据控制逻辑与结构特性，悬架系统可分为被动悬架与主动悬架两大类。被动悬架的弹簧刚度、减

振器阻尼等参数为固定值，仅能通过机械结构的物理特性被动响应路面激励，难以适配不同路况下的动

态性能需求，存在舒适与操控的固有矛盾。主动悬架则依托电控系统与执行机构，可根据实时采集的路

面状况、车身姿态、行驶速度等参数，动态调节悬架刚度与阻尼特性，从而突破被动悬架的性能局限，

实现不同行驶场景下的最优减震效果，成为中高端车型与高性能车辆的核心配置之一[6] [7]。 
实际道路环境具有强随机性与不确定性，为精准模拟这一工况，本文采用白噪声信号作为随机路面激

励输入。以车身加速度(直接关联乘坐舒适性)、悬架动挠度(影响悬架行程合理性)、轮胎动位移(保障轮胎接

地性与行驶安全性)作为核心评价指标，选取工程领域应用广泛的 PID 控制策略与基于最优控制理论的 LQR
控制策略作为研究对象，通过动力学建模与 MATLAB/Simulink 仿真分析，系统对比两种控制策略在主动

悬架系统中的控制效果与性能优势，为悬架控制策略的工程优化与选型提供理论支撑与仿真依据。 

2. 车辆主动悬架系统数学模型的建立 

为实现主动悬架控制策略的精准仿真与性能对比，需先建立能反映系统核心动力学特性的数学模型。

考虑到整车悬架系统的对称性与复杂性，行业内普遍采用 1/4 悬架模型进行动力学分析——该模型可剥

离非核心干扰因素，聚焦单轮处车身与车轮的动力学耦合关系，同时能精准复现悬架系统的核心振动特

性，为控制策略设计提供兼具精度与计算效率的建模基础。本章基于该模型完成动力学建模与特性验证。 

2.1. 主动悬架系统的模型简化与参数的选取 

将整车主动悬架系统简化为二自由度 1/4 悬架模型，模型包含簧上质量(车身两侧对应部分)、簧下质
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量(车轮与车桥组件)、悬架弹簧、悬架阻尼器及主动控制力执行机构五大核心部件，其结构示意图如图 1
所示。该模型通过集中质量法描述关键部件的运动状态，忽略了轮胎侧偏、车身侧倾等次要动力学行为，

可有效聚焦“路面激励–悬架响应”的核心传递路径。 
 

 
注： 1M 为簧下质量， 2M 为簧上质量， 1K 为轮胎刚度， 2K 为悬架刚度， 2C 为悬架阻尼， kF 为主动控制力， 0X 为

路面位移， 1X 为簧下质量位移， 2X 为簧上质量位移。 

Figure 1. Suspension system two-degree-of-freedom 1/4 model 
图 1. 悬架系统二自由度 1/4 模型 

 
模型参数的选取需兼顾典型性与工程实用性，参考主流家用轿车的悬架系统参数范围，结合实验室

台架测试数据，确定各核心参数的取值[6] [8]。参数含义及具体取值如表 1 所示，所有参数均处于量产车

型悬架系统的合理参数区间内，保证了模型的工程参考价值[7] [8]。 
 

Table 1. Parameter meaning and related parameter selection 
表 1. 参数含义及有关参数选取 

参数代号 代表含义 参数取值 单位 

1M  簧下质量(车轮 + 车桥) 40 Kg 

2M  簧上质量(车身对应部分) 500 kg 

1K  轮胎刚度 240,000 N/m 

2K  悬架弹簧刚度 16,000 N/m 

2C  悬架阻尼器阻尼系数 1500 Ns/m 

2.2. 主动悬架系统状态方程的建立 

基于牛顿第二定律对模型中簧下质量 1M 与簧上质量 2M 分别进行受力分析[6] [9]：簧下质量 1M 主要

承受悬架阻尼力、悬架弹簧弹力、轮胎弹力及主动控制力；簧上质量 2M 主要承受悬架阻尼反力、悬架弹

簧反力及主动控制力。通过受力平衡关系联立，建立主动悬架系统的动力学微分方程如下[7] [10]： 
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式中： 0X 为路面位移激励， 1X 为簧下质量位移， 2X 为簧上质量位移， kF 为主动控制力；当 0kF = 时，

方程退化为被动悬架的动力学微分方程，可作为后续仿真对比的基准模型。 
为适配现代控制理论(尤其是 LQR 最优控制)的设计需求，将微分方程转化为状态空间表达式。选取

能完整描述系统动力学状态的 4 个变量组成状态向量： 21 2 1Z X X= − ， 10 1 0Z Z Z= − ， 2 2Z X=  ， 1 1Z X=  ，

组成的状态向量如下为： 

 
T

21 2 10 1X Z Z Z Z =  
    (2) 

则系统的状态方程为： 

 X AX BU EW= + +   (3) 

式中：A 为 4 × 4 阶系统状态矩阵(反映系统固有动力学特性)，B 为 4 × 1 阶控制输入矩阵(反映控制输入

对状态的影响)，E 为 4 × 1 阶扰动输入矩阵(反映路面激励对状态的影响)。 
选取车身加速度 2Z 、悬架动挠度 21Z 和轮胎动位移 1 10K Z ，组成状态空间的输出向量 Y 如下： 

 
T

2 21 1 10Y Z Z K Z =  
   (4) 

则系统的输出方程为： 
 Y CX DU= +   (5) 

式中：C 为输出矩阵，D 为直接传递矩阵。 
代入表 1 参数值进行矩阵计算，最终得到各系数矩阵： 
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 (10) 

2.3. 主动悬架系统能控性与能观性验证 

能控性与能观性是现代控制理论中控制器设计的核心前提：能控性确保控制输入可对系统所有状态

进行调节，能观性确保系统输出可反映所有状态信息——这对 LQR 最优控制的有效性至关重要，同时也

为 PID 控制的参数整定提供理论支撑。 
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系统完全能控的充分必要条件是能控矩阵 2 3, , ,M B AB A B A B =   的秩等于系统阶数 n = 4；系统完全

能观的充分必要条件是能观矩阵
2 3T T T T T T T, , , ,N C A C A C A C =  的秩等于 n = 4。 

利用MATLAB控制工具箱中的函数进行数值验证：调用 ctrb (A, B)函数构造能控矩阵M，通过 rank(M)
计算得矩阵秩 4Mr = ，与系统阶数一致，证明系统完全能控的。 

 

 
 

调用 obsv (A, C)函数构造能观矩阵 N，通过 rank(N)计算得矩阵秩 4Nr = ，与系统阶数一致，证明系

统完全能观。 
 

 
 

验证结果表明，所建立的主动悬架模型满足 PID 与 LQR 控制器的设计要求，为后续控制策略构建及

仿真分析奠定了坚实的理论基础。 

3. 线性二次型最优 LQR 控制器的设计 

前文已建立主动悬架的状态空间模型并验证其完全能控性与能观性，为最优控制器设计提供了核心

前提。线性二次型最优控制(LQR)凭借对多目标优化问题的高效求解能力，成为主动悬架控制的经典方案
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——其核心优势在于可通过加权矩阵调配不同性能指标的优先级，同时约束控制能耗，契合主动悬架“舒

适性–操控性–经济性”的平衡需求。本章基于前文建立的状态空间模型，完成 LQR 控制器的目标建模、

权重配置与参数求解。 

3.1. LQR 控制器的控制目标与性能指标构建 

主动悬架的 LQR 控制目标需精准匹配整车性能需求，结合前文定义的核心评价指标，明确三大核心

控制目标：第一，抑制簧上质量振动，即最小化车身加速度 2Z  (直接决定乘坐舒适性，人体对竖直方向

加速度最为敏感)；第二，限制悬架动挠度 21 2 1Z X X= −  (避免悬架行程超限导致机械冲击，保障悬架结

构可靠性)；第三，减小轮胎动位移 10 1 0Z Z Z= −  (确保轮胎与路面的良好接地性，提升行驶安全性)。同

时，为避免主动控制力过大导致能耗激增与执行机构过载，需将控制输入 U (即主动控制力 KF )的能耗纳

入约束范围。 
基于上述目标，构建无限时间域内的二次型性能指标函数，通过加权系数调节各目标的优先级，表

达式如下： 

 ( ) ( )222 2
1 2 2 2 1 3 1 00

dJ q Z q Z Z q Z Z rU t
∞  = + − + − + ∫    (11) 

式中： 1q 为车身加速度加权系数， 1q 越大表示对舒适性的优先级越高； 2q 为悬架动挠度加权系数， 2q 增

大可强化悬架行程约束； 3q 为轮胎动位移加权系数， 3q 提升能增强轮胎接地性控制；r 为控制能耗加权

系数，r 越大对控制力的约束越严格。加权系数的选取需避免“单一目标最优而整体性能失衡”，需结合

后续仿真调试进行迭代优化。 

3.2. 标准二次型指标转化与矩阵求解 

为适配 LQR 的标准求解框架，需将上述性能指标转化为状态空间形式的标准二次型指标。标准形式

定义为： 

 ( ) ( )T T T
0

2 dJ X Q t X X NU U R t U t
∞
 = + + ∫   (12) 

式中：Q(t)为 n × n 维半正定状态加权矩阵(关联状态变量与性能指标的映射关系)，R(t)为 r × r 维正定控

制加权矩阵(约束控制能耗)，N 为交叉项矩阵(反映状态与控制输入的耦合关系)。结合前文 1.2 节建立的 

状态向量
T

21 2 10 1X Z Z Z Z =  
  与输出矩阵 C，通过变量替换与矩阵重组，可将自定义性能指标转化为

标准形式，进而推导 Q、R、N 矩阵的表达式。 
利用前文表 1中已确定的模型参数( 1 40 kgM = , 2 500 kgM = , 1 240000 N mK = , 2 16000 N mK = ,

2 1500 N s mC = ⋅ )，代入矩阵表达式进行数值计算，最终得到定常加权矩阵(因系统为定常线性系统，Q、

R、N 均为常数矩阵)： 
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=   (14) 

 
T

2 2 2
1 1 12 2 2
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3.3. 加权系数整定与最优反馈矩阵求解 

加权系数 1q 、 2q 、 3q 、r 的整定是 LQR 控制器设计的核心，采用“目标导向–仿真迭代”的整定策

略[5]：初始以舒适性为首要目标，设 1 1000q = (放大车身加速度权重)， 2 100q = (基础悬架行程约束)，

3 10q =  (基础接地性保障)， 1r =  (宽松能耗约束)；通过 MATLAB 仿真发现悬架动挠度超限，逐步提升

2q 至 500；发现轮胎接地性不足，将 3q 调至 50；最终通过 12 轮迭代调试，确定最优加权系数组合[1] [11]
为 1 1000q = 、 2 500q = 、 3 50q = 、 1.2r = ，此时各性能指标与能耗达到平衡。 

根据现代控制理论，当系统完全能控能观时，存在唯一最优控制律， 

 ( ) ( )* 1 Tu t R B PX KX t−= − = −   (16) 

其中 K 为最优反馈增益矩阵， P 为黎卡提代数方程的唯一对称正定解： 

 T 1 T T 0PA A P PBR B P C QC−+ − + =   (17) 

将整定后的加权矩阵 Q、R、N 及前文 1.2 节的 A、B 矩阵代入 MATLAB 控制工具箱，调用 LQR 求

解函数计算反馈增益矩阵，函数调用格式为： 

 [ ] ( ), , , , , ,K S E lqr A B Q R N=   (18) 

式中：S 为黎卡提方程的解矩阵 P，E 为闭环系统的极点。计算得到最优反馈增益矩阵为： 

 [ ]2431,1456, 34000, 0.00001K = − −   (19) 

结合状态向量
T

21 2 10 1X Z Z Z Z =  
  的定义，展开得到主动悬架的 LQR 最优控制律： 

 ( ) ( ) ( ) ( ) ( )* 5
2 1 2 1 0 12431 1456 34000 1 10u t X X X X X X−= − + − − − ∗    (20) 

对闭环系统极点 E 进行分析，其所有极点均位于 s 平面左半平面，证明该控制律可确保系统渐近稳

定，满足工程应用要求。 

3.4. LQR 控制的 Simulink 仿真模型搭建 

基于 MATLAB/Simulink 搭建 LQR 控制主动悬架的仿真模型，模型采用模块化设计结合实际动力学

特性与信号流向布局核心组件，结构如图 2 所示：模型包含路面激励生成单元、悬架动力学仿真单元、

LQR 控制运算单元、执行机构模拟单元及多指标监测单元，各单元通过信号链路实现闭环控制；其中路

面激励单元采用白噪声发生器模拟随机路面输入，经滤波器调节激励强度匹配 C 级路面标准；悬架动力

学单元嵌入前文建立的 A、B、C、D 矩阵，精准复现簧载质量、非簧载质量的动力学响应；LQR 控制单

元植入计算得到的反馈增益矩阵 K，接收状态向量信号后输出主动控制力；执行机构单元加入 0.01 s 延

迟环节，模拟实际液压/电磁执行机构的响应特性；多指标监测单元通过积分器、示波器等组件，实时采

集车身垂直加速度、悬架动行程、轮胎动位移等核心参数并记录数据。 
模型的仿真参数设置为：仿真时长 10 s，步长 0.001 s，求解器采用 ode 45 (适用于非线性与线性系统

的通用求解器)，为后续与 PID 控制器的仿真对比奠定统一基准。 
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Figure 2. Simulink simulation model of LQR controlled active suspension 
图 2. LQR 控制主动悬架 Simulink 仿真模型 

4. PID 控制器的设计 

作为工程领域应用最成熟的经典控制策略，PID (比例–积分–微分)控制凭借算法结构简洁、鲁棒性

强、对模型精度要求低的优势，在半主动悬架及中低端主动悬架系统中得到广泛应用。与 LQR 的“多目

标最优”设计逻辑不同，PID 通过比例、积分、微分三个环节的协同作用，直接对核心性能指标的偏差进

行动态修正，更适配工程化落地的便捷性需求。本章基于前文 1/4 主动悬架模型，以“舒适性优先、兼顾

操控与能耗”为目标，完成 PID 控制器的结构设计、参数整定及仿真建模。 

4.1. PID 控制器的控制目标与结构设计 

结合主动悬架的核心性能需求，明确 PID 控制器的核心控制目标：以车身加速度 2Z  (舒适性核心指

标)为主要反馈量，通过控制主动控制力 KF 抑制车身振动；同时以悬架动挠度 21Z 和轮胎动位移 10Z 为辅

助约束指标，避免单一指标优化导致的性能失衡。考虑到 PID 为单输入单输出(SISO)控制结构，采用“主

反馈 + 辅助限幅”的设计方案：将车身加速度偏差作为 PID 控制器的输入，输出为主动控制力基础值；

在控制链路中加入悬架动挠度超限保护(当 21 0.05 mZ > ± 时触发控制力衰减)和轮胎动位移限幅(当

10 0.03 mZ > ± 时增强控制力)，形成“主控制 + 硬约束”的复合控制结构。 
PID 控制器的核心控制律为比例环节(P)、积分环节(I)、微分环节(D)的线性组合，离散化形式的控制

律表达式为： 

 ( ) ( ) ( )
( ) ( )

0

1
 k

p i di

e k e k
u k K e k K e i T K

T=

− −  = ⋅ + ⋅ ⋅ + ⋅∑   (21) 

式中：u(k)为 k 时刻的主动控制力输出；e(k)为 k 时刻的车身加速度偏差(设定值为 0.5 m/s²，对应舒适工

况下的加速度阈值)； pK 为比例系数(调节偏差响应速度)； iK 为积分系数(消除稳态偏差)； dK 为微分系
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数(抑制超调)；T 为采样周期(结合传感器特性设为 0.001s，与仿真步长一致)。 

4.2. PID 参数整定策略与结果 

采用“工程整定法 + 仿真迭代优化”的参数整定流程，避免依赖精确模型的理论整定法在工程应用

中的局限性[12]，具体步骤如下： 
1. 初始参数确定：采用 Ziegler-Nichols (齐格勒–尼科尔斯)整定法，在无负载仿真环境下逐步增大

pK 至系统临界振荡[13]，记录临界比例系数 2500crK = 、临界振荡周期 0.12 scrT = ；根据经验公式计算初

始参数[14]： 0.6 1500p crK K= = ， 2 25000i p crK K T= = ， 8 22.5d p crK K T =⋅= 。 
2. 仿真迭代优化：将初始参数代入 Simulink 模型，在 C 级随机路面激励下仿真发现：车身加速度超

调量达 35% (舒适性不足)，悬架动挠度存在小幅振荡。采用“先调 P，再调 I，最后调 D”的迭代策略：

① 减小 pK 至 1200，超调量降至 20%；② 增大 iK 至 30,000，消除稳态偏差(车身加速度稳态值从 0.08 m/s
²降至 0.02 m/s²)；③ 增大 dK 至 30，抑制振荡(悬架动挠度波动幅度从±0.06 m 收窄至±0.045 m)。 

3. 边界工况验证：在颠簸路面(白噪声激励强度提升 50%)下验证参数鲁棒性，发现轮胎动位移超限，

新增“位移–系数”自适应环节：当 10 0.025 mZ > 时， pK 自动提升 10%，确保接地性。 
最终确定的 PID 最优参数组合为： 1200pK = (自适应范围：1200~1320)， 30000iK = ， 30dK = ；通

过阶跃响应测试验证：该参数下系统上升时间为 0.015 s，超调量 12%，调节时间 0.08 s，满足主动悬架

的动态响应要求。 

4.3. PID 控制的 Simulink 仿真模型搭建 

为确保与 LQR 控制器的仿真对比具有可比性，PID 仿真模型采用与 LQR 模型一致的基础框架，仅

替换控制器模块，核心组件按信号流向与功能逻辑布局，结构如图 3 所示： 
 

 
Figure 3. Simulink simulation model of PID controlled active suspension 
图 3. PID 控制主动悬架 Simulink 仿真模型 
 

模型包含与 LQR 一致的路面激励单元、悬架动力学单元，同步替换为 PID 控制核心单元，并保留自

适应约束与数据采集单元；其中路面激励单元采用白噪声模拟 C 级随机路面，激励强度 0.01 m²/s³，与

LQR 模型参数完全一致；悬架动力学单元复用前文 1.2 节的状态空间模型（A、B、C、D 矩阵），保障
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动力学特性同源；PID 控制核心单元嵌入整定后的 Kp、Ki、Kd 参数，以车身垂直加速度与目标值的偏差

为输入，输出基础控制力；自适应约束单元实时采集悬架动行程、轮胎动位移信号，通过逻辑判断动态

调节 PID 输出系数；数据采集单元借助示波器、积分器等组件，同步采集车身垂直加速度、悬架动行程、

轮胎动位移及控制力能耗数据，与 LQR 模型采集指标保持统一，为后续对比分析提供同源数据源。 
仿真参数设置与 LQR 模型完全一致：仿真时长 10s，采样步长 0.001 s，求解器采用 ode45，确保两

种控制策略的仿真结果具有可比性，消除因仿真环境差异导致的误差。 

5. 仿真分析 

为客观评估 PID 与 LQR 两种主动控制策略及被动悬架的性能差异，本章以前文 1/4 悬架模型为核

心，采用“被动悬架为基准、两种主动控制为变量”的对比方案，以随机路面激励为输入，从舒适性、操

控安全性、结构可靠性三个维度展开仿真对比，明确不同悬架的性能表现与主动控制策略的工程价值。 

5.1. 仿真方案设计与基准设定 

5.1.1. 仿真输入与环境配置 
路面激励采用白噪声信号模拟，依据 GB/T 7031-2005《车辆振动输入路面平度表示方法》中 C 级路

面(中等颠簸路面)的功率谱密度特性，通过 Simulink 的“Band-Limited White Noise”模块生成，贴合城郊

公路行驶场景[10]。 
三种悬架(被动悬架、PID 主动悬架、LQR 主动悬架)采用完全一致的仿真环境：仿真时长 10 s，采样

步长 0.001 s，求解器选用 ode45；通过 Simulink Data Inspector 同步采集车身加速度、悬架动挠度、轮胎

动载荷的时域信号，为量化分析提供原始数据。 

5.1.2. 评价指标体系构建 
结合悬架性能需求，构建“3 维”评价体系： 
1. 舒适性指标：车身加速度 2Z 的峰值，峰值越低表明乘坐舒适性越优； 
2. 操控安全性指标：轮胎动载荷的峰值，峰值波动越小表明接地性与行驶稳定性越优； 
3. 结构可靠性指标：悬架动挠度的峰值，峰值越低表明悬架行程利用越合理，可有效降低机械冲击

风险，提升结构使用寿命。 

5.2. 核心性能指标仿真对比 

5.2.1. 舒适性指标(车身加速度)对比 
三种悬架的车身加速度时域响应如图 4 所示，量化指标对比如表 2。由图可知，被动悬架的车身加速

度峰值最高，达 8.02 m/s²，表明其对 C 级路面激励的抑制能力最弱；PID 主动悬架的车身加速度峰值降

至 5.43 m/s²，说明 PID 控制能有效改善舒适性；LQR 主动悬架的车身加速度峰值最低，为 5.24 m/s²，振

动幅度最小，舒适性优化效果最优。 
从时域曲线趋势看，被动悬架振动衰减缓慢，持续波动幅度大；PID 主动悬架通过即时偏差调节，振

动衰减速度加快；LQR 主动悬架则通过多目标协同控制，在抑制初始振动峰值的同时，能快速收敛至平

稳状态，体现了其对车身振动的综合调控优势。 

5.2.2. 操控与结构指标对比 
悬架动挠度与轮胎动载荷的时域响应分别如图 5、图 6 所示。 
由图 5 可见，被动悬架的悬架动挠度峰值最大，达 95.6 mm；PID 主动悬架的悬架动挠度峰值降至

81.3 mm；LQR 主动悬架的悬架动挠度峰值最低，为 80.2 mm，波动幅度最平缓，结构安全性最优。  
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Figure 4. Time domain response curve of vehicle acceleration 
图 4. 车身加速度时域响应曲线 
 
Table 2. Comparison of peak body acceleration values and comfort performance of three types of suspensions 
表 2. 三种悬架的车身加速度峰值与舒适性表现对比 

悬架类型 车身加速度峰值(m/s²) 舒适性表现 

被动悬架 8.02 最差 

PID 主动悬架 5.43 良好 

LQR 主动悬架 5.24 最优 

 

 
Figure 5. Time domain response curve of suspension dynamic deflection 
图 5. 悬架动挠度时域响应曲线 
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Figure 6. Time domain response curve of tire dynamic load 
图 6. 轮胎动载荷时域响应曲线 
 

由图 6 可见，轮胎动载荷峰值表现出相似趋势：被动悬架峰值达 1608 N，波动最剧烈，接地性最差；

LQR 主动悬架峰值降至 1432 N，操控安全性提升；PID 主动悬架峰值最低，为 1026 N，轮胎接地性最优。 
从控制逻辑看，被动悬架无主动调节能力，难以平衡动挠度与轮胎载荷；PID 主动悬架通过单一反

馈量调节，对操控与结构指标的优化有限；LQR 主动悬架通过多目标加权控制，能同步抑制悬架过度变

形与轮胎载荷波动，实现了操控安全性与结构可靠性的协同提升。 

5.3. 仿真结果验证与鲁棒性分析 

为验证仿真结果的可靠性，对两种主动悬架的闭环系统稳定性进行验证：通过 Simulink 的 Linear 
Analysis Tool 分析闭环系统动态特性，结果显示 PID 与 LQR 主动悬架的闭环系统均无发散或持续振荡现

象，振动响应能随时间收敛至平稳状态，表明两种控制器均能保证系统稳定运行。 
结合三种悬架的时域响应曲线可知，主动控制策略(PID 与 LQR)对被动悬架的性能提升具有显著性

[1]，其中 LQR 在综合性能优化上表现更优，PID 则在控制逻辑简洁性上更具优势。 

6. 讨论 

本研究以 1/4 线性主动悬架模型为基础开展 PID 与 LQR 控制策略对比，虽明确了两种策略的性能差

异与适配场景，但受简化假设与研究范围限制，仍存在明显局限性。模型层面，二自由度线性化设定忽

略了实车悬架弹簧分段刚度、减振器粘滞迟滞等非线性特性，且 1/4 维度未涵盖整车侧倾、俯仰等多项动

力学耦合关系，导致颠簸路面或弯道工况下的仿真与实车偏差可能超过 15%；作动器采用无延迟、无幅

值限制的理想假设，未考虑液压/电磁作动器固有的 0.02~0.05 s 响应延迟及±5000 N 力输出饱和约束，实

际应用中可能导致 PID 超调量激增、LQR 最优性失效；控制鲁棒性适配不足，PID 固定参数在簧上质量

变化 30% (1 人至 5 人载荷)时，车身加速度 RMS 值超出舒适阈值，LQR 在轮胎刚度波动 20% (胎压变化)
时操控安全性显著下降，且均未纳入传感器噪声抑制设计。 

针对上述局限性，结合当前悬架控制领域研究热点，未来可从三方面深化研究：一是构建非线性多

维度整车模型，引入实车部件台架测试标定的非线性参数，建立“竖直振动–侧倾–俯仰”耦合动力学
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方程，结合神经网络辨识提升模型拟合精度；二是开发约束优化融合算法，将模型预测控制(MPC)与
PID/LQR 结合，在滚动优化中嵌入作动器延迟补偿与饱和约束，或采用“LQR + 滑模控制”复合策略抵

消作动器参数摄动影响；三是搭建感知–控制一体化系统，通过毫米波雷达与视觉融合实时识别路面类

型及附着系数，动态调节 PID 参数或 LQR 加权矩阵，配合卡尔曼滤波抑制传感器噪声，同时建立硬件在

环仿真与实车测试体系，实现“仿真–实车”的闭环修正。这些方向可有效弥补本研究的工程落地短板，

提升控制策略的实车适配性。 

7. 总结 

本文以 1/4 二自由度主动悬架为研究对象，开展动力学建模、控制器设计及仿真对比研究，为控制策

略选型提供支撑。研究中基于牛顿第二定律建立动力学微分方程并推导状态空间模型，选取簧上质量 500 
kg、簧下质量 40 kg 等典型参数，经 MATLAB 验证系统完全能控能观(能控/能观矩阵秩均为 4)；随后设

计 LQR 控制器(通过 12 轮迭代整定权重得最优反馈矩阵)与 PID 控制器(工程整定参数 1200pK = 、

30000iK = 等，设“主反馈 + 限幅”结构)，并以 GB/T 7031-2005 标准 C 级路面白噪声为激励，搭建

Simulink 仿真平台对比三类悬架性能。仿真对比显示，被动悬架性能不足(车身加速度峰值 8.02 m/s²、动

挠度 95.6 mm、轮胎动载荷 1608 N)；PID 主动悬架显著改善(对应指标 5.43 m/s²、81.3 mm、轮胎动载荷

1026 N)且逻辑简洁；LQR 综合最优(加速度 5.24 m/s²、动挠度 80.2 mm、轮胎动载荷 1432 N，安全冗余

充足)，闭环系统稳定。综上，LQR 适配中高端车型高综合性能需求，PID 适用于追求简洁性与成本效益

的场景，研究为工程选型提供关键依据。 
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