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Abstract

The automotive suspension system is a core component that determines vehicle ride comfort, han-
dling stability, and driving smoothness. To compare the control effects of different control strate-
gies on active suspensions, this study takes a 1/4 active suspension system as the research object.
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Dynamic differential equations are established based on Newton’s second law, and the state-space
equations are further derived with verification of the system’s controllability and observability. Us-
ing MATLAB/Simulink simulation software to build the simulation environment, white noise sig-
nals are adopted to simulate random road inputs. PID control strategy and LQR optimal control
strategy are designed respectively. Centering on three core evaluation indicators—body accelera-
tion, suspension dynamic deflection, and tire dynamic displacement—the simulation results of the
two control strategies are compared and analyzed. The differences in performance advantages be-
tween the two in active suspension control are clarified, providing a reference for the optimal se-
lection of suspension control strategies.
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Figure 1. Suspension system two-degree-of-freedom 1/4 model
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Table 1. Parameter meaning and related parameter selection
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Figure 2. Simulink simulation model of LQR controlled active suspension
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Figure 3. Simulink simulation model of PID controlled active suspension
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Figure 4. Time domain response curve of vehicle acceleration
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Figure 5. Time domain response curve of suspension dynamic deflection
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