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Abstract

In the context of the rapid development of e-commerce industry, financial risk prediction is of great
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significance to the sustainable development of e-commerce enterprises. However, the existing finan-
cial risk prediction research still demonstrates limitations in the prediction effect under the condi-
tion of imbalanced data. This study selects e-commerce enterprises from 2020 to 2024 as research
subjects. By comparing the effects of different sampling strategies on the performance of machine
learning classifiers, SMOTE combined with Random Forest (RF) was determined as the base predic-
tion model. Furthermore, the improved Crow Search Algorithm (CSA) was introduced to optimize
model performance, employing a fusion model to predict and analyze financial risks in the dataset.
Empirical findings reveal that on imbalanced datasets, the overall performance of the SMOTE-RF com-
bined classifier optimized by the Crow Search Algorithm is acceptable, improving the recognition ef-
fect for minority classes. The ICSA-SMOTE-RF model based on improved CSA effectively increases re-
call while maintaining high specificity, significantly improving financial risk prediction performance.
The empirical findings suggest that the proposed hybrid model in this paper effectively captures the
complex nonlinear relationships among financial indicators, providing a reliable theoretical and meth-
odological approach for risk prediction in e-commerce enterprises.
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M52, Batarin BidiZme ), WK ENOA RERE AALPR. [FIN, 57510 5e S I 52 [F) £
179, J8 I 3 b AR 5 A P 5 S 28 R TR AN SR BT 1) o IX S 2R A RN CSA BE M B4t 1
DM, A AR v e AT ORI e A= 1 B e R

ERES, RA d AEA8 R A AR A im0 2 (R AT RS At I, b i R S A IR A B0 B — AN
e B SRR BEREN N, SRR ECN MIT. 5 i R SH8TE d 4825 [0 AL B T PLR R N — AN )
&, AT — M

x5 =[xff",xf§”,...,xf§”], i=12,...,N;gen=1,...,MIT 3)

fEIsfd T, SR SHSCLECMRRER AR, 2 ERER T L MR KB R
TR, DAL R T A B BR R R AR 07 IR R IR L AL B st A — ik
AR CRERAT LT A7 B R LA -

1) BREEMTEC: BB DS R BELE R D 5 — R 98 j 2T IER, SRR EI SR ;KR
Bl AL E T AT

DOI: 10.12677/ecl.2025.14124644 6545 TR 4TS


https://doi.org/10.12677/ecl.2025.14124644

FBTHT, KR

gen gen gen _ gen i > gpgen
xge’”l _ X7+ 1 x FL; x(mj x; ), zfr] > AP/ (4)
i ) a random position , otherwise

Horr,  xf R i TEE gen UCGEARIN AL E s xR i 7E5E gen + 1 VAN BB ms 25
1 j 15 gen YOEARKT O S EEAT B (RN ILIREE £0)s 7 A0 RVEREIFE[O, 1IN S AT HIBENLEL;
FEGHY i FE5 gen YOI I VAT, RANSEEEHIELRIOP K, AP R 5T j 1E5 gen YOS
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HlE (B ZRIE T CSMAR 204 AN E K Gu i Js A TF 8- ). 4% 2020~2024 EAE 950 3,
WAL B 35 25 ATl e TR R IR A, 7 55 5 R AT L3S TR BB By, A B T R A [F 2 5 2R
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M, DARI I AR 4 A T 500 4

gE b, ARSCHLGH I H 45 I LB 99 AN, Wi RELE N 2406, ATHFLLEIZ N 1:24.

3.1.2. 1BHRIFIE S BIBTRALIE
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Table 1. Financial risk prediction indicator system
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Figure 1. Indicator correlation analysis chart (top 10 pairs)
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ADASYN %5757, W b3 5 i)V 5 SR R L 38 5 ST 3047 7025, DA e S M B8 Ab B2 75 % . 7EVEAl
APE R AL FRRCR AT, GEREAE VPN AR b B P BE BT (R DGR . BT F T 55 A 55 XU T
SR AN ) R, AERF 2R (Accuracy) 5y 2 2 HOERFEARTHE, R EER H e 47 & IR /D HER IR e
JifIFeRR, w0 AR (Recall). K5I Z (Precision). F1 {H(F1-Score)&,

Borderline-SMOTE 5 ADASYN 1E £ HiL (13 KA 7%, $dfs Ab FENLHI A7 7E % 5 - Borderline-SMOTE
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(0.6296), {H7E XGBoost - S EUHER R 5 E FFEAE 0.8362. 18 R FRE 7178 J LML 3% 24 31 U5 i L& RE %
AT R A B2, (H B BRI VEIBR T i 2 REAR K, DA™ SRS 1 B R0 A 2 AR 45 211,
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LA S TP IR RE, JUMOE RFE iR D B IR = A T AR 2 . Hork, FRvf SMOTE
fEFEHLAR RIS T BT A 5256 HH ) B i T 2.(0.98 14) B = FL 23 $80(0.6957), JEBI H JLAE 4 e A B o
KAE#: Borderline-SMOTE fEF& A ALK B8 /) RIS, EAEF LML . XGBoost BN
MRITER 2R IIE 3] 1 0.9694 DL L, [EIRH F1 4020t 70 A3 7 0.6230. 0.4324 Fl1 0.6667, 15t B HAELR
PR AR R M RIS, SR A RE i 238 00 s ADASYN FE Geid RAE 7 v b b T i
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Hrh, SMOTE J7 ik BENLARMBIRL S 1 Fr e se e il & b i i s i e, AR, F1E BRI Dk
B& T Borderline-SMOTE, {HHHEEIAE] 60% LA | o A A BELE AERR IR A AU A [RI, L EE7E 2844 E
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Table 2. Performance comparison of imbalanced data handling methods

2. TRELBAEMREXTEE

Accuracy tLE

Method FHEZE R 4% (NN) XGBoost BEMLAR AR (RF) LR EN SVM
Original 0.9627 0.9627 0.9774 0.9694
SMOTE 0.9627 0.9680 0.9814 0.9720
Borderline-SMOTE 0.9694 0.9720 0.9800 0.9720
ADASYN 0.9720 0.9654 0.9787 0.9694
IR 0.9734 0.8362 0.9747 0.9614
KA 0.7750 0.7577 0.8029 0.9587

Precision HL#¢
Method NN XGBoost RF SVM
Original 0.5152 1.0000 0.9286 0.7500
SMOTE 0.5135 1.0000 0.9412 0.7500
Borderline-SMOTE 0.5938 1.0000 0.9375 0.7000
ADASYN 0.6667 1.0000 0.8824 0.6875
R 0.6800 0.1781 0.8125 0.0000
RRFE 0.1392 0.1340 0.1638 0.4706
Recall bt
Method NN XGBoost RF SVM
Original 0.5862 0.0345 0.4483 0.3103
SMOTE 0.6552 0.1724 0.4828 0.4138
Borderline-SMOTE 0.6552 0.2759 0.5172 0.4828
ADASYN 0.5517 0.1034 0.5172 0.3793
IR 0.5862 0.8966 0.4483 0.0000
KA 0.9310 0.9655 1.0000 0.5517
F1 i

Method NN XGBoost RF SVM
Original 0.5484 0.0667 0.6047 0.4390
SMOTE 0.5758 0.2941 0.6957 0.5333
Borderline-SMOTE 0.6230 0.4324 0.6667 0.5714
ADASYN 0.6038 0.1875 0.6522 0.4889
R 0.6296 0.2971 0.5778 0.0000
RKFE 0.2422 0.2353 0.2816 0.5079

4. MEREFTNR SRR AR
4.1. SSIERELRNGH

BRI ERBEA SN SRR 2RMREEFR A, EZEEUAE - ERRIR
Ve, IR 20 o ir RN, 5 USSR LR, A S RN R BRI s [ 5 AT AT R R g 5
PP SRR R 5T R RE ST, SUmtERE: SAURH]L, FEBERE, ZREETRE, SCOE EEA R 2R
(. ST T e, AR SCEEAE G CSA (ALl EEAT T — SUgAfUt ook, L% S50E e B0 0 1 3 3
55 DS TN 170 i ik ) 7 9 2 AL

1) AR TR, B ABENRIaG 1L, AR A E 5T P A AT AR, AR
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R BT RAFHEA . Logistic MU A RN T
Zk+1:,u'zk'(1_zk) (7
Hebt, ze e (0, )RS k WISARHNRIAE, u REEHIZSH
RF—A> d ERPRALI R, AU Logistic BT B N MBI Z,, Zo, ..., Zn, HFIXEEIRILN
R E N BAlUE
x,,=LB,+Z -(UB -LB)) ®)
o,y 25§ RS AESE j A B, LB, iFn UB, /& %L1 T S A0 B 5
2) B EERABER AP A AT KE FL, JEIDE E K AP R FL Sl RES AU i 2 pE ik
AR, MERNAERWNERERR, FINEEIAR, IFER MR T IR R R SIS HEBARXWT:

gen

AP(gen)=AP.. +(AP._. —AP._. )- 9
(g ) min ( max mln) M[T ( )
Hrr, gen & ATIERIREL, MIT &5 RKIEARIREL, APmin Tl APmax & AP B8/ RKAH -
gen
FL(gen)=FL__-exp| c- 10
(1) = Pl -exp] e+ £ (10)

Hr, c=In(FL,, /FL,.) -

3) RS R I G LS, @M pmut XMECRR I 2T S AR I GU NS, 5 B
Sk R R, AT
x."”W:xfld+77-N(0,0'2) (11)

i

Hrh, N(o,az)x%iéjﬁ?'a 0. PREZEN o KB HBENLEL, » A& —ANBEE IEAR B In i N R E .
4.2. ICSA-SMOTE-RF 4% X\ & 700 mh & 15U
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Figure 2. Flowchart for solving the e-commerce enterprise financial risk prediction model based on ICSA-SMOTE-RF
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Table 3. Experimental results of financial risk prediction for e-commerce enterprises
= 3. B Rl 55 KR TR SEAR 45 R

A Accuracy Recall Specificity F1_Score AUC G-mean
SMOTE-RF 0.9814 0.5517 0.9986 0.6957 0.9806 0.7422
GA-SMOTE-RF 0.9707 0.5172 0.9890 0.5769 0.9766 0.7152
PSO-SMOTE-RF 0.9734 0.4828 0.9931 0.5833 0.9790 0.6924
CSA-SMOTE-RF 0.9800 0.6552 0.9931 0.7170 0.9789 0.8066
ICSA-SMOTE-RF 0.9720 0.7586 0.9806 0.6769 0.9836 0.8625
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