E-Commerce Letters 37 Rj%5i¥ig, 2025, 14(12), 6272-6279 Hans X0
Published Online December 2025 in Hans. https://www.hanspub.org/journal/ecl
https://doi.org/10.12677/ecl.2025.14124610

ETHEHHAPTSNEDETENEFERS
LBy

¥ OE, XER
FigHE TR, L

Weks . 20254F12 40 FHBER: 20254F12H18H; & T H: 20254F12 A31H

HE

HRRFE G RSB PP B SREAH T THAUETERE. #EERR TRNHE, &
BFFIRH—FET A P EoE BB EN R EAE. AR AL ERE S REER P A1
Ret, HRBEERANERAUETESE, LIRS ESRSH P HEES R TIL. ZTMovieLens
BWENLRRE, SEAHFETEME, HIUEZERMSE. MAEETNRE L BERK, FRNE
Precision@10. Recall@105MAP@10% Top-K#EFE$abr EIBURIRFA . B SRR T UL HI 2
SRR M S A R SR U T A A .

XK ia
WREE, FERNE, MUERE, Top-KitE, HFEMMTH

Recommendation System Algorithm Based
on Weighted Collaborative Filtering for
E-Commerce User Ratings

Qiang Guo, Haoran Wu

Business School, University of Shanghai for Science and Technology, Shanghai

Received: December 4, 2025; accepted: December 18, 2025; published: December 31, 2025

Abstract

To address the distortion of similarity computation and the decline in recommendation performance
caused by user rating volatility and data sparsity in traditional collaborative filtering algorithms, this
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study proposes a collaborative filtering method based on users’ rating information entropy weights.
The method uses the information entropy of rating distributions to measure the stability of users’ rat-
ing behaviors and incorporates it as a weight into the similarity calculation, thereby reducing the in-
fluence of high-noise users on recommendation results. Experiments conducted on the MovieLens
dataset show that, compared with traditional collaborative filtering, the entropy-weighted model sig-
nificantly reduces prediction errors such as RMSE and MAE, and achieves improvements in Top-K rec-
ommendation metrics, including Precision@10, Recall@10, and MAP@10. The findings validate the
effectiveness of the entropy-weight mechanism in enhancing recommendation accuracy and model
robustness.
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Figure 1. Performance comparison of the entropy-weighted user-based collaborative filtering model
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Table 1. MAE and RMSE comparison of the entropy-weighted user-based collaborative filtering method
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Figure 2. Comparison of Top-10 recommendation performance
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Table 2. Data comparison of the entropy-weighted user-based collaborative filtering method
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