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Abstract

Current e-commerce recommendation systems face core challenges such as insufficient understand-
ing of user intent, difficulties in multimodal information fusion, and severe cold-start problems. The
limitations of traditional algorithms in complex shopping scenarios are becoming increasingly ap-
parent. This research proposes an intelligent product recommendation system based on a multi-
modal large model. By constructing a three-in-one multimodal fusion architecture of “visual-text-
behavior”, itleverages the powerful semantic understanding and reasoning capabilities of the large
model to achieve deep insight and accurate matching of user needs. The research adopts a three-
stage iterative paradigm of PreTrain-PostTrain-Application, combined with the Agentic Retrieval-
Augmented Generation (ARAG) framework, transforming the recommendation system into a seman-
tic reasoning and multi-agent collaboration problem. Experimental results show that the system
achieves significant improvements in conversion rate (28%~37%), click-through rate (42%), and
user dwell time (18%) in comprehensive e-commerce platform scenarios. The technical architec-
ture adopts a lightweight design, with inference latency controlled within 500 ms, meeting the real-
time requirements of large-scale e-commerce scenarios. This research provides a complete technical
solution and implementation path for the intelligent transformation of e-commerce recommenda-
tion systems, which is of great significance for promoting technological progress in the industry.
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BB RG] SR, BEE I s T ok H i 2RI AL, A% Gl ke AL B 2R
WEE. a2 EEEE. MBI E 3 TH R R H a6

MHTHERE RGN = KAZ OBk P R A R A T B 45 R S S bR R R m = K, F AR
HEFEAUER R E WA P LR, o FaidiEn, FEEmZE S HE P RAEE 40%, Jfik
FRFALELE o LE AR (1] 2RSS BRl & A RS R U A AR & E A fiR. e
SRWEYE, ZOARY, S ZREMHEE S BB PR, IR TTA 20%0L E[2]; ¥ EE)
(v R E, T R R R = (0 T SR SRR, R - AR B R, A RCK E S AT
0.1% [3].

IAESR, Kl S BN LLM) M 2 S H R I PUdUR e v o i) dER i 1B R B 42 o Bl L 4 4
] MOON Z B A RAFBL ARG HE s T R IAG AT 55 | Bt K K3 CTR $27F 20% [4], ¥ RecGPT HAL
SR RSB S T F P A B EOE K, I RS FE B3R THER 5% [4]. X SERTh R I E
B, 2R KR BLTE R HEE U B A B RIS 7).
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(U0 H AR R, A7 il AT S A PRk 7]

TRPE 2 SR Y BURTE — @ PR P LR T RAE AR 8, (BN AEAEBAR B IE . KRR i
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DOI: 10.12677/ecl.2025.14124607 6251 1T 5508


https://doi.org/10.12677/ecl.2025.14124607

%E%f

LA

BT 5L URM tH SR KA AT ZR I LLM 2R, #2455 Bl Prompt 52t @i ID €
AR PR AR N R B P AT A 55 %08 5%, SIS P 0 S G ER ) SRR AT HERE . URM 7R AL P Bl & EIAS T
P15 11.0%0¥] Recall #&FF, 7£ 6 NNFAES HAREBL T 4% AT Target-Attention &5 44 )& SHEFEALAY[9].

% RecGPT £ T HALSH M F B /R LLM KBRS, 0hik A F - I 5247 AT 7o), R
B8 ) HL R A HE R A ) . B AN AR T P TR VR S AR BV SR AT R AT SR, B REE
2SN B ARBESBACRE RESUE R, IR45 G A R A SR HERE 751 A R,
FEH RecGPT RAGEA RS B SEBLAH P ilr B P AL BN, F P g i F P 45 B KSR T 1
#8 5% [10].

EBr L, Walmart Al FIBA$EHHJ ARAG (Agentic Retrieval-Augmented Generation)fEZLEHEFE R G %
A TR SCHEBRAT 55 A 2 B BEARPME 1918, N2 LLM 24 CTR #, i 24> LLM Agent 2= FEfi#
FU At Al A0E CUCECAN B R SCHEF . fE Amazon Review (4542 1() Clothing. Electronics. Home =
AR EHARIESETE, R IR S h R B[ 11].
3 HAB R
3.1. SESEEMERN

M 2 BN E BRE 2R R “HE - SR - AT A7 =M — Rt B, Il R RS
fe o PR SCARHEIRFI R P AT 9 8dls, R A i f v S AN P RAE, AR AN 1 PR BAR Rt
% 7 B] B MOON ff] PreTrain-PostTrain-Application = Bk, MR ZEARIES FHER B ART
B

e g S

{ | SHEHEE | }
k= e ;
Pt e e e I S i
: S R . EEXAE ARfTA
L MwGmE XAGIGE Foigme !
' o o
N
T TN

__________________________

i
<
F
Nm-
<}

Figure 1. Multimodal information fusion architecture
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Figure 2. User intent understanding multi-agent collaboration flowchart
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RankScore(u,i) = ol MatchScore(u,i) + w2 CTRPred (u,i) + w3 CRPred (u,i) — w4 Dist (u,i) 3)

RankScore(u,i): 7w X i 1 R4 HEF 435 CTRPred (u,i) ¢ T A R (R HEE R A ) 5
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Figure 3. Key performance indicators (KPIs)
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