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Abstract

The rise of short-video and live-streaming e-commerce has positioned platforms like TikTok (Douyin)
as critical gateways for online consumption. However, these platforms face the dual challenges of
high customer acquisition costs and high user churn rates, creating an urgent need for effective user
churn prediction methods. To address the limitation of traditional models—which struggle to sim-
ultaneously capture individual behavioral characteristics and relational structures among users—
this paper proposes a Structure-Relation Mutual Learning with Multi-dimensional Collaborative At-
tention network (SRML-MCA) for predicting user churn risk in Douyin e-commerce. The model con-
sists of two branches: The Structure Feature Encoder (SFE) takes multi-dimensional user attributes
and behavioral features—including age, income, RFM metrics, session duration, page views, and news-
letter subscription—as input to learn individual-level representations. The Relation Feature Encoder
(RFE) constructs a user relation graph based on interest tags, category preferences, and geographic
information, leveraging graph neural networks to capture group-level behavioral patterns among
similar users. A mutual-learning multi-dimensional collaborative attention mechanism enables dy-
namic interaction between the two branches, allowing adaptive reweighting of features and neighbors.
This yields a unified user representation that integrates both individual distinctiveness and relational
context. We evaluate our approach on the Douyin e-commerce user feature dataset from the Alibaba
Tianchi Competition. Under realistic constraints—specifically, the absence of long-term behavioral
logs—we define a standardized composite risk score based on days since last login and purchase fre-
quency, using its median as the threshold to create a binary churn label (high vs.low risk). Experimental
results under 5-fold cross-validation show that SRML-MCA consistently outperforms baseline mod-
els—including Logistic Regression, Random Forest, XGBoost, GCN, and GAT—across metrics such as
Accuracy, Precision, Recall, F1, and AUC: it achieves an AUC of 0.9992, an F1-score of 0.9839, and ex-
hibits low standard deviation, demonstrating both strong discriminative power and high stability.
This study demonstrates that deeply integrating structural and relational features through a mu-
tual-learning collaborative attention mechanism is an effective strategy for enhancing churn predic-
tion accuracy in Douyin e-commerce, thereby supporting data-driven, fine-grained user retention
strategies.
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Figure 1. Days since the user’s last login
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Figure 2. Correlation matrix of numerical features
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Figure 3. Model architecture diagram
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iy B AR Y BEAR P R LLG], CEREAR A AR RIS G0 T, HER 28 BE 08 DU B ASE 2 S TR )
VAR

TP+T.
Accuracy = N (24)
TP+ FP+TN +FN

2) K% (Precision)
TR HIE NIRRT P, BIERUR G R, SUERRE “RIBRARTE” I e (S

i

i

ik
P
TP+ FP

Precision = (25)

3) HHZ (Recall)
TEFCSLRAR P, B R DR A Ll . BRI, RN BR R A E s R sy, 2
i “UMAR AR ) E AR AR
TP

Recall = —— (26)
TP+ FN

4) F1 {E(F1-score)
RS S H R AR A, el A NIRRT o R EAERSHET TS 7 A R R B4R
I, F1ERE U SOt LR 1A
Precision x Recall

Fl1=2% (27)
Precision+ Recall

5) AUC (Area Under ROC Curve)

AR TARRFIE f 2 N AR, B X IEFERIIHRFBE /). AUC 7E[0, 1] IR HUAE, 4% 1,
FRAE S REA LA — X “URARTR” H P Bete S i b an RO, e AE AR BUAE T RS e
S AR RE o
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A, DRI R it s 2 58 A 2R (Loss), T & P ME 2 5 FL bR 28 2 B 22 57 . 2B H
Accuracy. Precision. Recall. F1 5 AUC, ] N\EEARUERGPE. BN FE. BHEERXS5HFREIEZNAE
PRI RL SR, A T4 T 220 i 97 2R TR

4. SEEER RS

RIS TR IS5 - R RO 2 A FER SIS AR, ASCEREENLARMAR .. ZEEIE. B
JEIR T (XGBoost)s KB4 (GCN) = TN 4% (GAT) 2 M R J5 iE e ont TR Y . 7R e 46
KA AT AR S5 et BARMOER: BREARBENLRI A 5 AN KRNERI T8, S IRERIEIU
1 H/E RIS, AR 4 FriERIIgREE, EEIIZGSMNA S R, X &5 as RIEAR P 5hRMEZE . iR
UERT B, B i B AR R 350 SR F AR R £ &1 or A ZRBC B . 1E3% Accuracy. Precision. Recall. F1 I
AUC SRR IIME R AnttE 22 . MR R I 2.

MIEEARGE R, fEGHLas 2 IR, BEALARMR R DA R0y, BB AR T2 48 B3 A XGBoost, it
R F AR S MR AR B VR FE AR A& R T 5 . DR 22 SRR T, 5] NEIS5 MG 1 GCN 7 & TiiE
b EIILTBENLARAR, RUHER 7 R RE FALRRE B A B TR i R Ttk gt . k0, FETEE
BUHIH GAT fEFTA s ESEOl BT, HAR#EZENR/DS, AREHAE BIZE ) Eol N IRE 5, BEAYN G H
A5 A B G R B Z) i SRS 4 . fE IR B, ASCER ) SRML-MCA #— B 4E GAT [12EAl FHS /N
MR AR e T, [FIETELER ) SRML R B 4. 27 b, Ui ASCIRHEE ) - KRB 24 RER
FIPEEAE m 2R K N R R I B A, IR R S m a4 R AR e k.

Table 2. Comparison of model experimental results

2. RBISLIN AR

A Accuracy Precision Recall F1-score AUC
BENLARAR 0.9370 + 0.0166 0.9328 +0.0256 0.9417+0.0099 09371 £0.0160  0.9816 = 0.0084
AR 0.9030 £ 0.0317 0.9113 £ 0.0271 0.8913 +£0.0461  0.9009 +£0.0336  0.9713 £0.0116
XGBoost 0.9190 + 0.0107 0.9265 +0.0165 0.9094 +0.0143 09177 +0.0110  0.9742 + 0.0081

GCN 0.9410 + 0.0097 0.9343 + 0.0306 0.9498 £0.0227  0.9413 £0.0088  0.9820 + 0.0080

GAT 0.9820 + 0.0103 0.9782 +0.0156 0.9859 £0.0102  0.9820+0.0102  0.9988 + 0.0008

SRML 0.9830 + 0.0136 0.9823 +0.0216 0.9839+0.0102  0.9830+0.0135  0.9992 + 0.0009
SRML-MCA  0.9840 + 0.0080 0.9840 + 0.0102 0.9839+0.0081  0.9839 +£0.0081  0.9992 = 0.0009
5. &5

ARSI [ R LR I P R AR TN 1), 5 A AU R Bl R L SRR AR Y
R, SR T —AhEE R - SRR B AEFE R I M4 (SRML-MCA). #8545 44 73 520 m ™ 94>
AT L SOMERAE, JEE R R SHER T R R LG, #3815 M A 4R FE T BN 2 2 R 2% 45
s IR SRR BB TE B A S R FIE RO HLE], AEPISRAE BT R 2 R SEl B AS R B 5 R
SrBC,  AATITFRAT AR AR ZE R AR AR UK P SR 5 38R AR SCHE T ] B L 2L Rt 355 rl g P AR K
a5, RGME TEENDRIE. XBWE . 9T N R WA TAT AEN IS YRR R . 518 2L
PEACHR BN A 1 N R IEAR IR S Z K WIT N H 8, ASCRIIE T “ Hll B 3 R B - TSR bnite
WA FLRE KIS AT 73, JF LA A 80 BB IS e 2R XU S5 (R UL ) — 7 e as, MR SINL 5%
LV IT SR T FU SR AL 7 — PP T AT . SKIRERERY], £ LT NRAEHEZE T, SRML-MCA £
SRR EXIET 2R AR, HARMEZBD, RILM REFFZ AT Ma REErt. BEmE, K

DOI: 10.12677/ecl.2025.14124657 6661 TR 4TS


https://doi.org/10.12677/ecl.2025.14124657

Wik

SCAR N FE AR L T 6 A2 HL P SR PN SRS AL 8 5 T 3R 3t 1 — Mo R A S, X n A sk =
TRATNF IR T a8 P S HRE S R AR RA €S H A 58 £ AT ik
—B g R EE KR RAT N HE, SIS RIS & B A 5 R LR, 20 R Y
AT —ARRZMESHE T BRI T % R AL SSRGS - KA
Al AR AR

SARE, ARSTTAEREE R R AR B SS ERUS 7 BONEAR RO, (BAFEA 2 2 k.
B, WURMRZERMKIE “So g mba” M SR " AT N BIE R, A6 N TH
S5IR, DRI e 32 20 T 1V ARFIEIE RIS . L, i rh B85 m e . (A (9 28 0l AL
FINHBRbRRE, EORGEH - R R S YE W R = A — R 5Tt VRHIERIERE Sy, (EX T AR H
BU K R4, SRR 2 E RE AR R L . B, MHRGRIERERAL, A SCRE /RS R EIg R
2% NSRS HERR M TS RRAAR X S e 58 TARWAE S & T 2 AT 85 )ABHE S L iR AR 28 LA 1,
RTINS AL A SR AL, I C AR R A R B AR T A, AT 7 GRUE T R F) [
BE— AR TR B b 5 B R
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