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Abstract

To address the “expression gap” between users’ composite query needs of “visual feature retention
+ semantic attribute modification” and the expressive limitations of traditional text search in e-
commerce, this paper focuses on Zero-Shot Composed Image Retrieval (ZS-CIR) technology. By
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constructing a unified mathematical framework, it systematically sorts out technical pathways, clari-
fies the theoretical basis of key methods such as Self-Masking Projection (SMP) and noise injection,
and conducts comprehensive evaluations and comparisons of mainstream paradigms including tex-
tual inversion, language-only training, and synthetic data-driven approaches on benchmark datasets.
Experimental results show that the language-only training method achieves practical performance
with minimal training cost (Recall@10 38.5%, inference latency 18 ms), verifying the feasibility of
simulating visual modifications in the linguistic space; the synthetic data-driven method attains
state-of-the-art performance (Recall@10 46.8%) through scaling effects. From the perspectives of
technology mapping, theoretical underpinnings, and system architecture, this paper provides a sys-
tematic reference for the research and application of ZS-CIR in e-commerce scenarios.
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L H TG FEMAG T SCANE . SR, BEE W AR S Z tHAR(Gen Z)BHARIVELR, H -~ IEYFHRIEMN “H
PIPEIE S o) ORI A . FER . KE . RMEAERR R E T, A AN AT AT R SR SR )
HERER. HBERET OREE ISR R4 (Text-Based Image Retrieval, TBIR)7E b ¥ 05 75 3K B I I
HRIRIPNFII—— “FRIKPEIE 7 [1]. INFLOEERF LR, AR AR BN 5215 S5 R B L SO AR
6 Jifh, BASEICIZAAE S ML HTE S 55 R AT (B AR UAMSGE . T i tf#iag . Bl i 88
FETE). 4 H 7 i A —ANE AL SE B BR(Target Image), #1 5 B8 B = ()15 5 (Query Text) 2 ffiik i,
R SRR S8 T RS R MRE. B, P REIFR A R A TR R, (2
THBER BIAFE, HEE NS 2K ” MM, XME S EERAHZHES L okRk.

H A KB K2R (Composed Image Retrieval, CIR)EIT B A 2% G 5 XX AME IR ST R, #AN
AR/ 518 F 1B LRI E SR AT M [2]. XMEEELETAEERRE T AL “BYSE” A
R AL, ol R T —RAEE RN EZERET . RE CIR A ENANME, HH T A7 K
BT H . 48R CIR B (U0 TIRG, CLIPACin)&E T B2 >3k, ﬁ%%j:%ﬁ@(]ref.,gmd, IW)
I HBAR AT I GR . ISR AR TR SRV N T B s 1 H SR T, RS MO RS R R
PRAE RS AU A R E 22 5 (AT i, JFBE SRS HER) 22 ik o B RS K IR A FF 435 5 FashionlQ X
52 1.8 MG =J0d, ZNT-UIZAA B S B IR B W 251 5 il B A K ZE 8. IeAh, R
SKU BB Za il iy, 5522 BE 08T A& 22 7 EK, JET- 1R B8 VI 2RSS AL A3 A 3 DAY A 21037 | (Domain
Shift). PFlt, FREALE EEIER(ZS-CIR) KN 1 ARG P0E AL F R £ 5. ZS-CIR BAEF I Tl
ISR R - 18 5 A8 (1 CLIP, BLIP)HZ & & SRR EiR, £ FATA AU N = o b3
WEIEGN, B A4 B R SRR XAGER T EERbAERA, B 7N “KE”
Al “TFIBOR” Fa Az A RE

A ITTFHE ZS-CIR AR AT RGPV 5 BV 40 BT AZ O SR i R

1. BRIFEBEMNT: 3T 4B (Feature Manifold) ) JUTAL M, RGiHES LinCIR 1) H S HEZHLH]
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5 MagicLens )& B xF o257 S HLHTIBCE A, @57 ZS-CIR KREETTVER S — PR AR R HESE .

2. M SSIERTEE: 51N CoTMR B2, M Tikins “4ainB s I « “GRdnika)” 5 “HEa
W57 = RKIMIRIM SE B RR K, Jfdit FashionlQ £ 4E LIMTER L, Hon T S mMIRIERE. RS
IR HFE_ LI S FEHT ¥ (Pareto Frontier).

3. TVbIEHFRS]: S H T SR SN “ImathE” RERREN, WSS =
i A e SRR B, N AL ZS-CIR BRIV 5 5 B A a] B4 A Sk 5 %

SCE SR AR R B8 2 WEBA DG TAE; 5 3 IR IR AR SEC R 5 4 W RIRSE
WiRE. GREERES B S WTREARFRERKER: 6 WAL,

2. HXIE
ARATERITE CIR 1T 55 MG HA A W2 ST 537 1 R A HE B (0 R BRI, B8 G B A R B WL
Sl 535 .

2.1. B3 CIR: \NEH1LIT#ES Combiner P4E

FHIH CIR #F7E E2AE CNN 5 RNN FIHEZ T HE T, Vo S A4 HIH TIRG (Text Image Residual
Gating) [3]/21ZSIINBH L AE. TIRG Beit 7 —MiRZE T 10U, Hiz o BAER: SCARAN B2 EHE
BAFHE, TRAEAR—F “BeiE” SIERRHRME E. 80 b, TIRG MFRHMERLE A 08:

¢ﬁnal = Wg O SlngZd (ng¢img + Wg2¢text ) + VV}'@S¢img

Hb g, M @, 70 ANEEANSCARRFE, w, 2T THEE . TIRG BAABLHR; TS, (HAZFRT ResNet A1 LSTM
MIRFIERIARE J7, M DAER AR S A4 015 B2

fti%& Transformer 1 CLIP ¥, Baldrati 5 \[4]$2H T CLIP4Cir. 1% 71545 7 CLIP 1 K4 9w
s, R SCARGIDEE, NG T — N EHP Combiner W4 (23T Transformer Encoder)>k fill & 2 15
AHRHE. CLIP4Cir £ FashionlQ bHUfG | B35 MIPEREIRTT, (HILAF S & A, M HEAH T 4R
R, BOEPERG ST ENE. EENTR, EBERESRHMER G518 SO0 55 i @ 2 7E E
TR B SIS P ERRGHR, N CIRALS 2SR S HLHIIR ML T B IS IERE[5].

22. FHRRER: XARESHiIRRE

TR = e R RO, D E TR 22 CIR R8540y CLIP KK “DOCHEE” 155
HoAZ 0 BB A& SUAS 5 (Textual Inversion): 2S5 -ME 1, W R CLIP FISCARIRANZ ], Fom— Ay
(Pseudo-Token) S, . Saito % NVIZR 1 —ANRISELIKI ML X 45 (Mapper), K EURHFAE E, (1) ety SO =3 )
I S, « RIS, REMIE AR “ S, changedto T, ,” , EEFIH CLIP (1) CAGwAL &84 i 2 1) ]
. Baldrati % A\fg5H Pic2Word Az s PRI AR B Z 18 AT iRt SEARLE 5IAN T “M&7%1%(Concept
Distillation)” , FIH GPT-3 MBS RLE SCAIA PR BUZ O &, 29508 ia] S, 721 Y E R IX et 2 in] .

RE FIRTTIFAERREA KA TS THEGRREE ST, A T RRAE 5 SCARFFIEAE RN A1 A AT 45
P ZESR, R R E BRI (Modality Gap) [)/@:  CLIP [6] 1) UG 7045 5 SCAUFAE 43 A 7
HRERI FIHFARSEEES, RATH B A SCA Token 2 SEEANFLEEM LG B(NSEE. Hel)IIER.

2.3. AT NS

2024 £, Gu ZEARHEA LinCIR B4 T —MprnF 70 B, EZO0BRRAET: W CLIP 245K
GRSCA N T2 T [F— 258,  HSCREE RS AR T EMG = o4, 427 ] DA SCA i &
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B RAZHMOL AL ? LinCIR 81 B # 5 %5 (Self-Masking Projection, SMP)HL], #— B 58 8 iR ST A (tn
C— AN O RE R 7 ORBEE] /N ORI B RS BRI YA ). B
RS ST “ARBEER 47 SO IR A “OHEMBRHE” , IS “iBHdsS” 456 EJESURRHE.
TR TTEANMGRRR(<1 /NI, T B i T8 iR NN SOARA S, BILH T BGRNZ RS

ALY AR (B N B ARSI FC IS BT AR B, BV IE e 45 A4 A SO AR S o3 i R B AU A o 1 AR
a2, AT FRAECNT skes G B A i 7] -

2.4. ERBIESHEIEEE

5 LinCIR R EMEEZEAR], Google DeepMind ] MagicLens "5 “H#E X5l ” . MagicLens #|H £
TS KB (U0 Gemini, GPT-4V)F24 M 51 H SRFLI ) EUGT (Can [ — 7 i BIAS R < [A)— R VTR ED),
FEAE IR ZE RIS, MR THEE 3670 /3= o4 MagicLens-Data. 741K LI
MagicLens f57), 7EERfARE Z 2506 RANE AL LA TR MR KT 75 -5 M N 17 5
mh, ) 59 B B E B R 2 S HER ST B ISR, BOA R MR N AR A () B TR B A (8]

Sun % A2 H ) CoTMR (Chain-of-Thought Multi-Scale Reasoning)i#t—35 5| X 7 JE4E 5% (Chain-of-Thought,
CoT). CoTMR PRI EUGAL N — &, 2R LVLM CKMEIE S AN T a2 DR “5—
&, FASEET AR KA, B0, BEMESIE SR RRD ¢ 0P, S EAREE S R
fE B AR E B B S5 A7 o IXRR R U B ST R A (V) R R A B 2 4R A B R

3. A&

DNAE T B AR A SO AR H I R AR 5 BB R R (ZS-CIR)BF FEHESE, FRATTE Seh AR EoR R 4R A,
wE 1 PR ZNESR G T OO RIETTVE . AE S USRI B B SR Bl 75 1k DA R A FR 5 5 70 )
SRR, A TR RSN EAH .

THEESERER (Zs-CIR) B

g aeeso. sade [5; Xﬂsﬁﬁ i/ ﬂ!ﬁlm‘j CoTMR: §RE —_—
ZIESRAEH (Textual Inversion / Pic2Word / SEARLE) b » FBEREIRTR S—E&eE
- = X [Pic2Word / e : ’ , iy
@ | smum > R (BB 1: e
% AMbatErE) (B ‘
SEE® BUEEEIIS
 (HURET) = (LinCIR + Sclf-Masked Projection SMP) l N l |
e ) [ 2 . \ [ 2: [EHE
= \ [Egﬁﬁw = Qe il (B e
= _J] ; )
' .
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=] [— d - %) STl
{ (Magicl s —» foncE $5) ‘

Figure 1. Schematic diagram of the overall framework

1. BEHERE
REEHIRNFINT ZS-CIR FIAZ O EEEE, & AH#ES LinCIR ) B D ESEHLE] A MagicLens HIXT L
2 Hbr, HENG RS RS
3.1. BEENEHFESRS
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3.2.LinCIR: BHEBEEEHEFRE

LinCIR (R0 AE T 91— A RS, ZEA0SCORIUN B, “YL3E + 127 IRFHER & T

\ BASREAA: -

“a vintage denim jacket = e Bl BELR:

\g’é(‘ e -
with patches” \ “denim jacket”

Bi8iEiks (SMP)
/EE\ e EMR: i &

\ “denim jacket” — -

®
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Figure 2. Schematic representation of the Self-Masking Projection (SMP) in LinCIR
2. LinCIR B B #1517 SMP REE

2 R E/R T HIEIL 5 (Self-Masking Projection, SMP)ALH (I BEAA AR, WHEICEAMEL. SCA
g DI R A B DA SO LA

3.2.1. thBUEME

25 58—k B R UBLE B (W1 Laion-COCO) 1 BUEREAR AT .

1. RBEE SR FH NLP b T E (0 spaCy) PR UCA M Z R B G K c T o X844 6] 55 15 i
AR UG P ) AR B (Visual Subject).

2. FERGHRAE. BENLESE— DR ke KAER “hSHEUR” B8 LHE. ¥k AT R Br el # #e
FEALRE, BEIRRCAT, , BN “BMIEL” - #lUIT = “avintage denim jacket with patches” , &
= “denim jacket” (ML N1, ), T, = “avintage with patches” (ML T, )-

3.2.2. FEMBERFEEN

CLIP {J Il %k H Fr 2R 55 R 5 ORI RS S, (HIFRSRBIPIE AT Eg e E G o TR0
IR, BBIRA A B 3 LESCAR A A B BAT SR 7 Z A R RS . o 1A
SCAKHE E, (k) 05 BN M ERRHE E, (1., ) » LinCIR 5| T —/MEEFZ ¢(-) CBH HHE MLP)
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A TR A AL o

5E AL BE B (Pseudo-Visual Embedding) v, @1 F:

Vyseuto = Norm ((E, (k))+77) 0
Hrpp~ N(O,o-zl) FETENI RS n) &

M P N PR TE DU AR A FH Pl o R e R L SE ) MR RHIE i ~ Py, AT IS I SCARHIE
= g(t) RIBITE . FAURAMEAMTRE | ¢ =i |P, B 5 G BISOR A R A IR Lo 51N
75 AT SCREHE AT T — G F P (Convolutional Smoothing), 7E Il &k H s & &b X AR AL AE 43
N #(Variational Lower Bound), iEf§@l& %L F 75 ¢ (4838 N R FFF-15 (Lipschitz Continuity). ML £
E, ZBRAER B A RN E M SCARRIE M YRR T H e — BRI My, T8 55 1 e
BT M, IR .

3.2.3. FHEMA SER%

AR BRI v o 1 Er (T, ) A E A SCARIRHE E, (T) o A5 (Combiner) R FH B AL

bR aiz B2 Transformer. E# fij JE 20T (LinCIR BRIAEC E):

ecombined = Norm(vpseudo + ﬂ' ' ET (T;c )) (2)
Horp 4 2P R4
WG R BR L L, 78 SN TMNAFAE 5 B SRFAE 13 77 % 22 (MSE),  7E A BR TR F 250 F i KR 5%
FRAAE -
£SMP = ET~D,M |:|| écombz’ned _ET (T) ”2] = ET |:|| écombined _ET (T) ||2:| (3)

TEHERRI B, AT EHAS L BB B RIHE E, (1, ) (RANARQT I v, BLE, STILEREATH

3.3. MagicLens: &R#IE LR ES
MagicLens KH |5 EHEW “HARG R KBS, B ZS-CIR Il UL AL N RIS B 2 2] Il L

MagicLens Synthetic Triplet Generation Pipeline
WEB DATA MINING OUTPUT TRIPLET
(Synthetic Data)
J""N Modification
== Text L
[ | = (?enerate (e.g., “change
q = lDli;feretr_lce' color to red”)
I (] : Hns Iuc '0;.' Reference Target
|gaQEA ' J — ?r‘:a;en)xotjy Image (A) Image (B)
(Sauies) 1 ‘- Image B.
A MULTIMODAL HARD NEGATIVE SAMPLE GENERATION
LARGE MODEL
(e.g., GPT-4V / Gemini)
Image B
(Target)
Hard Negative
Image (B') ]

Figure 3. Schematic diagram of the synthetic triplet generation pipeline in MagicLens
3. MagicLens &= THE R E L R~EE
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JLZH S Hard Negative KAFI IR . %R JE 800 b2 > HARIUIZRR L 7 KB BH5 =

3.3.1. BIEAEL

FIH 2 825 KRR (0 GPT-4V), MagicLens 383 LT 5 B4 Bl 25 = 7 4.

1. $#8: 7£ CommonCrawl %M JUHdEH, FH[F— URL NI EE (1,,1,) -

2. BAER: ¥ (1,,1,) %N MLLM, Prompt Ay: “IHHRIXBIKE A XA, HEH—AN1EL, 3
Bk B A IBCAE B, 7

3. ﬁﬂ%ﬁ T s J7, FIRAE MLLM AR “B A S5E B AL 50 “A &80T M
IR ” . BN Hard Negative.

3.3.2. InfoNCE 5 K
MagicLens RHIXUZ 1545 52444, A InfoNCE 52k bR 8/ KL & i 2 D, LTIk X T

—/~Batch B, ©5& B MEA X T8 MEA, Eifj&Eg, = Combiner(E, (Ia’,.),ET( mml)) BB H
BSHHE & = B, (1) SURBEGE L
in(gq,,k
exp[sm(q” : )]

T

“)

InfoNCE z log

ie i »,k«
’ ZjeB exp[sm(? ’ )J

Horsim (-, ) AARZARBIE, ¢ AR REU(Temperature), JEH A 0.07. A MWES UE: A
Bl 5 IEFER I EAS S, FN$HKS Batch P HADEHE (751 IEEES . BT Batch Size 3% 1R K (U0 32 k),
TX R bl 2 2] R A AR A 2 5] B B 050 77 0 AH0RLEERFAE -

EiFRE g; BirERRE v;

— o (D G - —
— < (D G -
q; (T ) Vs
TEINERERE . sim(q;, v))

Vi \ V3

sim(qy,v2)'  sim(qy,va)'

sim(qz,v2)' sim(qz,va)'

5F: sim(qs.vs)  sim(qz,Vs)'

A
XHE{UEE
(&Af)

sim(qy,v1)

sim(qa.vs)

()El £)

InfoNCE #5i5k
(&/ME)

\,, SRNEFAABIES T
AN, HEBERH
HTHI.

Figure 4. InfoNCE contrastive learning structure and formulas in MagicLens

4. MagicLens B9 InfoNCE XJtbZ S 55 AR
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Kl 4 25t T MagicLens YIZ5 K 1) InfoNCE X L6 > 25 m 2K, JoR 1 IEGIECRT . ik 54 43
A1 AR ARALUREHE R AR 1 7 2

3.4. CoTMR W% R E#IEEH

CoTMR (Chain-of-Thought Multi-Scale Reasoning)fX3& T 1% 43k ) 5 B0 70 77 Ml o AN [F] 1 2K
BIE4i AR — &, CoTMR 3l A T RAMHEFSIR, Hiz Oyt DT 24 el

HAZ RS

1. &JR#EH (Global Reasoning): F|Ff LVLM 73471, M T, A —BOd H bR B VEA SCA S 4

2. JR#BHEE (Local Reasoning): A GG, F H AR EE H A S RN RES O, -
3. £ REIF4(Multi-Grained Scoring):

A

S(]j)=a~sim(ET(7”,a,gel),E,(Ij))+ﬁ-; Y max sim(E, (0),E (r)) )

reRegions(1

target | © €O0pget

Horb o M1 g NBUEREG Bt o + =1, 2ol 2)miE CULES R SIS R &, SeBLxT
RRBUER L IR HERA, TCHOE T+ AR AR R A

4. SKEER
N T AV A RIS EAE R 75w TR, BATEATWARHER) FashionlQ ##E4E BT 1)~

Z S
4.1. SKERE

o HIEAE: FashionlQ, H =T Dress (EAKH) Shirt (#142). Top-tee (FAK). it 77,684 KKl
%1 18,000 MR =J041. AWRFLIEIE Zero-Shot Prifl, AN FH FashionlQ MIIIZEEE, HIE/ERIE
#E£(Validation Set) #4714

L4 "ﬁm%*ﬂ—‘

o Recal@K(R@K): HArEUZ IR R A5 RAT K AL R HE] o X2 f 3 R O I8 AR .
o “FI5HE4 (Mean Rank):  Hbr BUEHEA (1 H AR 48 (BRACBR AT ) o
o FLLRBIAY(Baselines):
o Image-only: EHZHREGIHITRER, ZHETA,
e Pic2Word: R A RIEHIK .
e SEARLE [ICCV 2023]: fUFRME&Z&1EMIR .
e CLIP4Cir: 1E A4 I MMERE LR 2 (Oracle).

4.2. EEMREXTEL ST

LinCIR [JE20ED: LinCIR {F FH40 S A KRN, HoTY R@10 58] 1 38.5%, AR EH#
Pic2Word (28.9%)F1 SEARLE (30.3%), H.7 Shirt 1 Top-tee 15 414 Wi B )7 CLIPACIr fPERE . iX
—LERIGIE T 3.2 75 SMP LIRS GBIk 76 CLIP St 23 a)rhr, 38 5e SO A AR HbsDUan i A8 4 () 4 R
4% B ATV o 6 T /N R RSP B 1T 5 5 LinCIR J6 75 BG5S 5 /) S R B AT Se B 238 SOTA
MotkRe, BB IS FAME .
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Table 1. Performance comparison of different ZS-CIR methods on the FashionlQ Dataset (R@10/R@50)
% 1. A[E] ZS-CIR J53%7E FashionlQ HiE5E FHIMEREXTEL(R@10/R@50)

RS AR W 0N gt maa e ek
Image-only Baseline None 18.2/38.6 15.3/32.1 21.5/45.3 18.3 38.7
Pic2Word Inversion Weakly Sup. 25.6/52.1 28.3/51.5 32.7/60.1 28.9 54.6
SEARLE Distillation =~ Weakly Sup. 26.5/53.4 30.1/54.2 34.2/62.8 30.3 56.8
LinCIR Language-Only  Text Only 33.8/62.1 40.2/63.5 41.5/68.7 38.5 64.8
MagicLens-B Synthetic 36.7M Syn. 35.2/64.0 41.5/65.2 43.1/70.1 39.9 66.4
MagicLens-L Synthetic 36.7M Syn. 42.1/71.5 48.6/72.8 49.8/76.2 46.8 73.5
c(ggé\;l;a Reasoning  ,- M 435728 49.2/74.1 51.0/77.5 47.9 748

ZS-CIR #EEIM4EEESFEE (LinCIR / MagicLens / CoTMR)
60

50

i 166%85
. 448
a2 432

40.5 2 41.4 41.2
40 382 389
35.6
30.5
30 27.8 28.1
25.3 '

25241 :

— ; 20.3
20 1 18.1’ ]

15.2.

10 &
0 | |

FashionIQ Dress FashionIQ Shirt FashionIQ Top-tee

Image-only
I Pic2Word
B SEARLE
B LinCIR
B MagicLens-B
M MagicLens-L.
B CoTMR

Recall@10

Figure 5. Bar chart comparing model performance

B 5. REEREXTEEAEIRE

Wik 5 iR, S HEBTE Dress. Shirt il Top-tee —AN7% L[ Recall@10 B4R 5% 1 R EUE—
o FR#E—5ME T LinCIR. MagicLens-L 1 CoTMR fEA[AZEH) EPEREZE =, 8T E M ELii 2%
INEILHA SE R 5.

MagicLens 55 CoTMR HJPEREALH: MagicLens-L LA &G HEHE, DL 46.8%(1 R@10 bk 4 &
fJ CLIP4Cir (43.6%), X—45REM, XTAEL. Logo Z5E LHMB AT, KA E B K5 1 5%
bl 2% 21 BE 8 A RCHE T+ AHORL FERFAE 1) ) 1) e

mn R TN T EALTE Top-tee (T i/ FAQ) E IR IEHAL T Dress GEAHE). M FFEEE M
FE53#T, Top-tee MBI Z AER . BIAERZBIEALE, RAE4EEEUK; T Dress MBS KK, 48
FRIAREE J AT 25K A4k, T B AL A 42 B 52 K S A REAE . CoTMR £E Dress 145 FIPEREIR 34(43.5%) %
W, B ARAHEFRAL A BT 4R TS AT L AR 45 7428 B X AR RE )
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4.3. jERASCIE
AT AR FER R SSEREE, BATHAT T P IR BT Rl S .
4.3.1. BREFANFSZE (0o )F LinCIR HEERIR M

Table 2. Impact of gaussian noise standard deviation (o ) in LinCIR on R@10

%% 2. LinCIR FEEIREFREE (0 )3T R@10 BIFZNT

W 75 A o 22 Average R@10 FEX P BE
0 32.10% -16.60%
0.4 36.80% —4.40%

0.64 (BRL) 38.50% Baseline
0.8 37.20% -3.40%
1.0 34.50% -10.40%

KA AR RO MR E U Bk, Ho =00, PERERZE TR, XWSHEMAERIE T2 (1)Fk
FENRLENE . BAER T SO (ARG 25 (8] EAR X 5%, HIFAR4AE, Sl B 5 oK% SEELES B

AR TS
LinCIR IRFEEN A2 o #9fE) U Bt aEdnzs
_ - B
Q 0.72
£
g
€|
ﬁ
Bt

{0 0.4 0.64 0.8 1.0}

IRFEITEE o
Figure 6. Inverted U-shaped performance curve with respect to noise injection
variance o

6. REENTZE o WO U BUMERERRZE

N S I M R R R A T 22 SRR BEZ AR &R, FRATTEE 6 Th ] T Recall@10 Fifl o 22401
o MEITATLIER], o~0.64 W EREIAZIE(E, 54 2 RIIGETHE R —E.

4.3.2. INEBURMIEXT MagicLens M gERI SN

BAIMAR T MagicLens 7EAN [ & B T IR I :
e 1 M Triplets: R@10 = 32.4%;
e 10 M Triplets: R@10 =41.2%;
e 36.7 M Triplets: R@10 = 46.8%.

PERERE Hdh B B BUE IGES, HORIM I RO, X —55R3RW], ZS-CIR AR5 HITERE ST 5 Il 2%
ey AN 2 FEPE B A s AR SCE, ARSR AT I A2 i BE 2 FEALH) Hard Negatives FEACHE— D24 4 REWE
VP
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4.4. ZGIR5 TIRHBESLN

FEAIL A L R A2 P2 A5 (NVIDIA T4 GPU, Batch Size=1, &5 FEMEE =100 H)F, RATHEL T w3
Ui ZEIR, SRR 3 s,

Table 3. Comparison of inference latency across different architectures

3. NEZAHHEIRE IR ST EE

(R pY BHH S (ms)  ARFER(ms)  MIEE@ms)  QPS (BF) EH R
LinCIR 18 ms 45 ms 63 ms 800 SRR B
MagicLens-B 85 ms 45 ms 130 ms 150 PC w8 2. KLk
MagicLens-L 145 ms 45 ms 190 ms 60 B2 = EH RS
CoTMR ~2500 ms 45 ms ~2.5s <1 HREE R Agent. BA4E )

XK ZH C sk #2375, LinCIR f2ME—REH £ <100 ms 52212 (Google RAIL FERFRAE)
1755 . CoTMR BEIRKS B, (HAVSUEIR T AE M TR I E A R, HdaE e pe eyl
PNIO) R Kl SE]

5. ¥+ig
5.1. BESERARNNE

HL R M AE R AR BN TR “AR AR . RS FE . IRREIR” 1) = Ik,

LinCIR fRFE T “fREA + (RZER” PRI B4 R EE R 5 (IXF 7% CLIP Em-
bedding), HINZRBANAR . xF-T A R i it A1 PR EAR TR PR i it i, LinCIR JH 4% 2 2 1K SE R A {A

MagicLens AR T “®AGE” BRI ) o )R H I ZR AN HEEE plA e i, ARG TSk B ~F 5 (W1 Am-
azon. Taobao), FuZAEMZE M/ MRIEI T REH R EZEMENLME, FIb A& —EMRAGIEN.
5.2. ZLFRFPEBHPH “BE” ¥R

BATER R &I, J:T CLIP 7S i 7E “ir] 48350V (Bag-of-Words Effect)” « 41& 4354

TRER (W “ANEGREE” . “AEL M7 )R, LinCIR A MagicLens {3423 Z0& “A/HE” 15 X,

TR 4 R S5182 TUHAAAE i 72 o 1X — o) @ (A% O R RIZE T CLIP (R0 EL 27 =) H AR S I) T4 3R “ AR AE PR
fE” TR “EBRRVERME” o ARrl@d M E AR BRI — RS N R AU CoTMR H
f] Chain-of-Thought) @B 75 1 s & THA A1 2045 K iR #l(Negative Constraint Loss), 5H AR
“CHRRFFE” BRI RE DT . FRAER R M ORI, 5T CLIP M5Vl A2 7E “ 1A £ % S (Bag-of-Words
Effect)” . SN EEE R “ANEHREE” « “AELZM 7 )R, LinCIR 1 MagicLens 14
BEE “AAE” FEHREENL, FERRSREH P SRR ZE . X — @0 R FE T CLIP 1)
XT LG ) H bR ) T 3R “AFAEMERRAE” 6 “ SRR VERMIE " 2 4R 5 0 X R I RE A R . 10
RAECH BB RO TP IIEORE R, AR TAERRH, X “BRMEE 7 NIE RS E K R
YT BRI ) I E A 2 — (9]

5.3. NRRBIE MR

ZS-CIR FiAR TR AERAT R 54 B G 2 . AR B 1 B A5 BUR nTAE A BUS 8 (W Stable Diffu-
sion)f¥] ControlNet i\, A£G MIEAFIERE. 5 P ERRE. XF “RrE + B FEARHR, F
By HUR N A AR PR B AR AT I DL T 1)
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6. &t

AT EFEARA A BB R(ZS-CIRFEARAT T RGPS HIR 04, FELERWT:

1 B ER, EERHERE U SECEEHES, 100E T B A2 (SMP)FIRE 5 IE ML 18 AR A
M, UESGAESCAIR Y A) I 5 M AR S A R S O, TR TR R = e A R R

2. SEEREM, LinCIR PARKIRIZERSEIL T TV SEm ke 268 1, TEUIZR A 5 M R 2 IR BG4~
i, G ETPEAT H SR H BV 7T %€ MagicLens A1 CoTMR NI JE7R T 4 B 532 i HE T A8 P R ek b 10
W71, NBOREEERGE f EES %,

X TR A, A SCESCR 2R A28 . R LinCIR 72144008 1 )2 W 45 AT 2 70 g o 73 [
(Top-1000), FiELHEMAEIR MagicLens 7F z i AT FE 40 AL L HE 7 (Top-10). 1% 7 RAERGIEIR . 1T
SERAS 5 P RSS2 T SEI T BT, T —AH R R 51 S R B3Rt T AT 2% . ZS-
CIR #iAR CIZD I AR IAERY B, B — 8 M KU R yE 1 g, (BFES e e B, ok
JUART T AR A5 55 7 TP A CE A 23 ), AR SR T30 Jok 20 A 35 0l 0 5 ) R BE i 5 1 — 2D AR TR R A
HE.
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