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摘  要 

为解决电子商务搜索中用户“视觉特征保留 + 语义属性修改”的复合查询需求与传统文本搜索表达局限

形成的“表达鸿沟”，本文聚焦零样本组合图像检索(ZS-CIR)技术，通过构建统一数学框架，系统性梳理

其技术路径、阐释自掩码投影与噪声注入等关键方法的理论依据，并在典型数据集上对文本反演、纯语

言训练与合成数据驱动等主流范式开展全面评测与对比。实验结果显示，纯语言训练方法在极低训练成

本下实现实用性能(Recall@10 38.5%，推理延迟18 ms)，验证了语言空间模拟视觉修改的可行性；合成

数据方法依托规模效应达成当前最优性能(Recall@10 46.8%)。本文从技术图谱、理论支撑与系统架构

层面，为ZS-CIR在电商场景的研究与应用提供系统参考。 
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Abstract 
To address the “expression gap” between users’ composite query needs of “visual feature retention 
+ semantic attribute modification” and the expressive limitations of traditional text search in e-
commerce, this paper focuses on Zero-Shot Composed Image Retrieval (ZS-CIR) technology. By 

https://www.hanspub.org/journal/ecl
https://doi.org/10.12677/ecl.2025.14124723
https://doi.org/10.12677/ecl.2025.14124723
https://www.hanspub.org/


谢志伟 等 
 

 

DOI: 10.12677/ecl.2025.14124723 7204 电子商务评论 
 

constructing a unified mathematical framework, it systematically sorts out technical pathways, clari-
fies the theoretical basis of key methods such as Self-Masking Projection (SMP) and noise injection, 
and conducts comprehensive evaluations and comparisons of mainstream paradigms including tex-
tual inversion, language-only training, and synthetic data-driven approaches on benchmark datasets. 
Experimental results show that the language-only training method achieves practical performance 
with minimal training cost (Recall@10 38.5%, inference latency 18 ms), verifying the feasibility of 
simulating visual modifications in the linguistic space; the synthetic data-driven method attains 
state-of-the-art performance (Recall@10 46.8%) through scaling effects. From the perspectives of 
technology mapping, theoretical underpinnings, and system architecture, this paper provides a sys-
tematic reference for the research and application of ZS-CIR in e-commerce scenarios. 
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1. 引言 

电子商务的核心在于连接“人”与“货”。在过去的二十年间，搜索引擎作为这一连接的枢纽，其

交互形态主要依赖于文本框。然而，随着消费升级与 Z 世代(Gen Z)群体的崛起，用户的购物需求正从“目

的性购买”向“发现式购物”转变。在时尚、家居、美妆等非标品类目中，视觉外观往往是购买决策的

首要因素。传统的基于文本关键词的检索系统(Text-Based Image Retrieval, TBIR)在处理视觉需求时面临

着天然的认知瓶颈——“表达鸿沟”[1]。认知心理学研究表明，人类大脑处理视觉信息的速度比文本快

6 万倍，且视觉记忆往往包含难以用语言穷尽的细节(如复杂的几何纹理、微妙的色调渐变、独特的剪裁

廓形)。当用户脑海中有一个清晰的视觉目标(Target Image)，却只能用匮乏的语言(Query Text)去描述时，

信息熵的急剧损失便导致了搜索结果的偏差。例如，用户想要寻找一件“像图片 A 那样领口设计，但袖

子像图片 B 那样，且颜色为莫兰迪灰”的衣服，这种复合意图在现有搜索框中几乎无法表达。 
组合图像检索(Composed Image Retrieval, CIR)通过联合参考图像与文本修改指令进行检索，被认为

是缩小视觉与语言语义差距的重要技术方向[2]。这种多模态交互方式完美契合了人类“指物言事”的自

然交流习惯，被认为是下一代电商搜索的重要发展方向。尽管 CIR 极具商业价值，但其工业化落地长期

受阻于数据瓶颈。传统的 CIR 模型(如 TIRG，CLIP4Cir)属于监督学习范式，需要大量的 ( ), ,ref modI T Itarget
三元组数据进行训练。构建此类数据集需要标注人员具备极高的审美判别力，能够从海量商品库中找出

两件“视觉相似但仅有特定差异”的商品，并撰写精准的差异描述。目前最大的公开数据集 FashionIQ 仅

包含约 1.8 万个训练三元组，这对于训练拥有数亿参数的深度神经网络而言简直是杯水车薪。此外，电商

SKU 更新频率极高，每季度的新品风格差异巨大，基于旧数据训练的模型往往难以泛化到新品上(Domain 
Shift)。因此，零样本组合图像检索(ZS-CIR)成为了学术界与产业界共同关注的焦点。ZS-CIR 旨在利用预

训练的大规模视觉–语言模型(如 CLIP，BLIP)中蕴含的丰富先验知识，在无需任何领域内三元组标注数

据的情况下，直接实现对组合查询的理解与检索。这不仅消除了数据标注成本，更赋予了模型对“长尾”

商品和“开放域”指令的泛化能力。 
本文致力于对 ZS-CIR 技术进行系统性评测与理论分析核心贡献如下： 
1. 理论深度解析：基于特征流形(Feature Manifold)的几何视角，系统推导 LinCIR 的自掩码投影机制
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与 MagicLens 的合成数据对比学习机制的数学本质，建立 ZS-CIR 关键方法的统一理论解释框架。 
2. 架构与实证对比：引入 CoTMR 模型，构建了涵盖“纯语言训练”、“合成数据驱动”与“推理

增强”三大流派的完整技术图谱，并通过 FashionIQ 数据集上的详尽实验，揭示了各流派在精度、效率与

资源消耗上的帕累托前沿(Pareto Frontier)。 
3. 工业落地指引：提出面向高并发场景的“端云协同”混合检索架构，明确从移动端特征提取到云

端重排序的完整技术链路，为电商企业的 ZS-CIR 技术选型与部署提供可操作的实践方案。 
文章后续结构安排如下：第 2 节回顾相关工作；第 3 节详细阐述方法论与数学原理；第 4 节展示实

验设置、结果与深度分析；第 5 节讨论技术局限与未来趋势；第 6 节总结全文。 

2. 相关工作 

本节将梳理 CIR 任务从早期的监督学习到最新的零样本推理的技术演进脉络，重点关注特征融合机

制的革新。 

2.1. 监督式 CIR：从参数化门控到 Combiner 网络 

早期的 CIR 研究主要在 CNN 与 RNN 的框架下进行。Vo 等人提出的 TIRG (Text Image Residual 
Gating) [3]是该领域的奠基之作。TIRG 设计了一种残差门控机制，其核心思想是：文本不应完全重写图

像特征，而应作为一种“修改量”叠加在图像特征上。数学上，TIRG 的特征融合公式为： 

( )1 2final g g img g text res imgw sigmoid W W Wφ φ φ φ= + +  

其中 imgφ 和 textφ 分别为图像和文本特征， gw 是门控权重。TIRG 虽然设计精巧，但受限于 ResNet 和 LSTM
的特征表达能力，难以理解复杂的语义修改。 

随着 Transformer 和 CLIP 的出现，Baldrati 等人[4]提出了 CLIP4Cir。该方法冻结了 CLIP 的图像编

码器，仅微调文本编码器，并训练了一个轻量级的 Combiner 网络(基于 Transformer Encoder)来融合多模

态特征。CLIP4Cir 在 FashionIQ 上取得了显著的性能提升，但其本质仍是全监督学习，严重依赖于数据

集的规模和分布，容易在小样本场景下过拟合。在国内研究中，跨模态特征融合与语义对齐问题已在图

文检索、视觉问答等任务中得到系统研究，为 CIR 任务中的多模态融合机制提供了理论基础[5]。 

2.2. 零样本探索：文本反演与伪词映射 

为了摆脱对三元组数据的依赖，研究者开始尝试将 CIR 任务转化为 CLIP 擅长的“以文搜图”任务。

其核心思路是文本反演(Textual Inversion)：将参考图像 refI 映射到 CLIP 的文本嵌入空间，表示为一个伪词

(Pseudo-Token) *S 。Saito 等人训练了一个简单的映射网络(Mapper)，将图像特征 ( )IE I 转换为文本空间中

的向量 *S 。检索时，系统构造文本查询“ *S  changed to modT ”，直接利用 CLIP 的文本编码器生成查询向

量。Baldrati 等人指出 Pic2Word 生成的伪词往往缺乏语义可解释性。SEARLE 引入了“概念蒸馏(Concept 
Distillation)”，利用 GPT-3 从图像对应的文本描述中提取核心概念，约束伪词 *S 在语义上接近这些概念词。 

尽管上述方法在零样本条件下实现了组合检索能力，但由于视觉特征与文本特征在嵌入分布和几何结

构上的差异，仍然存在显著的模态间隙（Modality Gap）问题：CLIP [6]的图像特征分布与文本特征分布在

超球面上并未完全重合，强行将图像映射为文本 Token 会导致细粒度视觉信息(如纹理、光照)的丢失。 

2.3. 纯语言训练 

2024 年，Gu 等人提出的 LinCIR 提供了一种新的研究思路，其核心假设在于：既然 CLIP 已经将图

像和文本对齐到了同一空间，且文本数据的获取成本远低于图像三元组，那么是否可以仅用文本数据来
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模拟视觉修改过程？LinCIR 通过自掩码投影(Self-Masking Projection, SMP)机制，将一段完整描述文本(如
“一只红色的小狗”)拆解为“视觉部分”(关键词“小狗”)和“修改指令”(剩余部分“红色的”)。模

型学习如何将“视觉部分”的文本嵌入投影为“伪图像特征”，并与“修改指令”结合重构原文本特征。

这种方法不仅训练极快(<1 小时)，而且由于接触了海量样式的文本组合，展现出了较强的泛化能力。 
类似的思想在国内跨模态研究中亦有所体现，即通过结构化文本建模和语义分解来模拟视觉语义变

化过程，从而降低对成对图像数据的依赖[7]。 

2.4. 合成数据与推理增强 

与 LinCIR 的轻量化路线不同，Google DeepMind 的 MagicLens 坚持“数据驱动”。MagicLens 利用多

模态大模型(如 Gemini，GPT-4V)挖掘网页中自然共现的图像对(如同一商品的不同视角、同一系列的款式)，
并生成描述差异的指令，构建了包含 3670 万个三元组的 MagicLens-Data。在如此庞大的数据上训练的

MagicLens 模型，在理解复杂空间关系和逻辑推理上达到了较高的性能水平。在电商与大规模应用场景

中，利用弱监督或自动构建的多模态数据进行模型训练，被认为是缓解人工标注成本的重要工程路径[8]。 
Sun 等人提出的 CoTMR (Chain-of-Thought Multi-Scale Reasoning)进一步引入了思维链(Chain-of-Thought, 

CoT)。CoTMR 不再将图像视为单一向量，而是利用 LVLM (大视觉语言模型)进行显式的多步推理：“第一

步，识别参考图中的主体是长裙；第二步，理解修改指令是‘变短’；第三步，推导目标图像应具有短裙特

征且保留原图的颜色与材质”。这种显式推理显著提升了模型的可解释性和对复杂指令的鲁棒性。 

3. 方法 

为便于理解本文所提出的零样本组合图像检索(ZS-CIR)研究框架，我们首先给出整体技术路线图，

如图 1 所示。该框架涵盖了文本反演方法、纯语言训练方法、合成数据驱动方法以及推理增强方法之间

的关系，有助于把握后续各小节的逻辑结构。 
 

 
Figure 1. Schematic diagram of the overall framework 
图 1. 整体框架图 

 
本章将深入剖析 ZS-CIR 的核心算法原理，重点推导 LinCIR 的自掩码投影机制和 MagicLens 的对比

学习目标，并建立统一的数学符号系统。 

3.1. 问题定义与符号系统 

设 { }1 2, , , NI I I=  为电商商品图库，其中 N 通常为千万至亿级。给定一个多模态查询对
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( ),ref modQ I T= ，其中 refI ∈  为参考图像， modT ∈ 为修改文本。我们的目标是学习一个检索函数

: dF × →   ，将查询映射到一个 d 维嵌入向量，使得该向量与目标图像 targetI 的特征向量 ( )I targetE I 在

度量空间中距离最近。 
定义预训练的 CLIP 编码器： 

• 图像编码器： ( ) 1: d
IE −⋅ →  ； 

• 文本编码器： ( ) 1: d
TE −⋅ →  。 

其中 1d − 表示 d 维单位超球面，即所有输出向量均经过 L2 归一化， 2 1v =  。 

3.2. LinCIR：自掩码投影的数学原理 

LinCIR 的核心在于构造一个自监督任务，在纯文本域内模拟“视觉 + 语言”的特征融合过程。 
 

 
Figure 2. Schematic representation of the Self-Masking Projection (SMP) in LinCIR 
图 2. LinCIR 的自掩码投影 SMP 示意图 

 
图 2 形象展示了自掩码投影(Self-Masking Projection, SMP)机制的整体流程，包括关键词抽取、文本

掩码、伪视觉特征构建以及文本语义重构。 

3.2.1. 伪数据构造 
给定一个来自大规模语料库(如 Laion-COCO)的图像描述文本T 。 
1. 关键词提取：利用 NLP 解析工具(如 spaCy)提取文本中的名词短语集合 T⊂ 。这些名词短语通

常代表图像中的主体对象(Visual Subject)。 
2. 掩码操作：随机选择一个关键词 k ∈作为“伪参考图像”的语义载体。将 k 从T 中移除或替换

为占位符，得到剩余文本 kT ，作为“修改指令”。例如  T  = “a vintage denim jacket with patches”， k  
= “denim jacket”(视为 refI )， kT  = “a vintage with patches”(视为 modT )。 

3.2.2. 投影网络与噪声注入 
CLIP 的训练目标是对齐图像与文本的整体语义，但并未强制两者在分布上完全重合。基于特征分布

的量化分析表明，图像嵌入分布 IP 通常比文本嵌入分布 TP 具有更大的方差和更复杂的流形结构。为了使

文本特征 ( )TE k 能够模拟真实的图像特征 ( )I refE I ，LinCIR 引入了一个投影网络 ( )φ ⋅  (通常为两层 MLP)
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和高斯噪声注入机制。 
定义伪视觉嵌入(Pseudo-Visual Embedding) pseudov 如下： 

 ( )( )( )pseudo Tv Norm E kφ η= +  (1) 

其中 ( )20,η σ∼ I 是注入的噪声向量。 

噪声注入的正则化作用可通过如下逻辑推导：假设真实的图像特征 Ii P∼ ，我们用投影后的文本特征

( )t tφ′ = 来逼近它。若仅最小化点估计误差 2t i′ −  ，模型容易过拟合到文本分布的狭窄流形上。引入噪

声η相当于对文本特征进行了一次卷积平滑(Convolutional Smoothing)，在训练目标函数中对应优化变分

下界(Variational Lower Bound)，迫使融合函数 F在 t′的邻域内保持平滑(Lipschitz Continuity)。从几何角度

看，该操作将模型的有效输入空间从文本流形 T 扩展到了其 − 管状邻域 T
 ，从而提升覆盖真实图

像流形 I 的概率。 

3.2.3. 特征融合与重构损失  
模型的目标是利用 pseudov 和 ( )T kE T 重构原始文本的特征 ( )TE T 。融合模块(Combiner)采用简单的加权

加法或轻量级 Transformer。在最简形式下(LinCIR 默认配置)： 

 ( )( )ˆcombined pseudo T ke Norm v E Tλ= + ⋅  (2) 

其中 λ 是平衡系数。 
训练损失函数 SMP 定义为预测特征与真实特征的均方误差(MSE)，在单位球面上等价于最大化余弦

相似度： 

 ( ) ( )2 2ˆ ˆ
textSMP T combined T T combined Te E T e E T∼    = − = −          (3) 

在推理阶段，我们直接将真实的参考图像特征 ( )I refE I 代入公式(2)中的 pseudov 位置，实现零样本迁移。 

3.3. MagicLens：合成数据上的对比学习 

MagicLens 采用了更直接的“数据合成”策略，将 ZS-CIR 问题转化为大规模监督学习问题。 
 

 
Figure 3. Schematic diagram of the synthetic triplet generation pipeline in MagicLens 
图 3. MagicLens 合成三元组生成管线示意图 
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图 3 展示了 MagicLens 的数据合成管线，包括网页图像对挖掘、多模态模型生成差异指令，以及三

元组构建与 Hard Negative 采样的全过程。该流程为后续对比学习目标的训练提供了大规模监督信号。 

3.3.1. 数据合成管线 
利用多模态大模型(如 GPT-4V)，MagicLens 通过以下步骤生成训练三元组： 
1. 挖掘：在 CommonCrawl 等网页数据中，寻找同一 URL 下出现的图像对 ( ),a bI I 。 
2. 指令生成：将 ( ),a bI I 输入 MLLM，Prompt 为：“请描述这两张图片的区别，并给出一个指令，说

明如何将图 A 修改为图 B。” 
3. 负例挖掘：为了增强判别力，同时让 MLLM 生成“图 A 与图 B 的相似点”或“不符合修改方向

的描述”，作为 Hard Negative。 

3.3.2. InfoNCE 损失函数 
MagicLens 采用双编码器架构，利用 InfoNCE 损失函数在大规模合成数据集 syn 上进行训练。对于

一个 Batch B ，包含 B 个样本。对于第 i 个样本，查询向量 ( ) ( )( ), ,,i I a i T instr iq Combiner E I E T= ，正例目标

图像特征 ( ),i I b ik E I+ = 。损失函数定义为： 

 

( )

( )

sin ,
exp

 log
sin ,

 exp

i i
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i i j
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q k
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
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  (4) 

其中 ( )sim ,⋅ ⋅ 为余弦相似度，τ 为温度系数(Temperature)，通常设为 0.07。公式(4)的物理含义是：最大化

查询与正例图像的互信息，同时拉大与 Batch 内其他图像(负例)的距离。由于 Batch Size 通常很大(如 32 k)，
这种对比学习能迫使模型学习到极具判别力的细粒度特征。 
 

 
Figure 4. InfoNCE contrastive learning structure and formulas in MagicLens 
图 4. MagicLens 的 InfoNCE 对比学习结构与公式 
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图 4 给出了 MagicLens 训练中采用的 InfoNCE 对比学习结构示意图，展示了正例配对、批内负例分

布以及相似度矩阵的构成方式。 

3.4. CoTMR 的多尺度推理架构 

CoTMR (Chain-of-Thought Multi-Scale Reasoning)代表了该领域的重要研究方向。不同于前两者将图

像压缩为单一向量，CoTMR 引入了显式的推理步骤，其核心流程通过以下逻辑实现： 
其核心流程包括： 
1. 全局推理(Global Reasoning)：利用 LVLM 分析 refI 和 modT ，生成一段对目标图像的详细文本描述 

t̂argetT  
2. 局部推理(Local Reasoning)：利用对象检测模块，预测目标图像中应包含的关键对象集合 target 。 
3. 多尺度评分(Multi-Grained Scoring)： 

 ( ) ( ) ( )( ) ( )
( ) ( )( ), max ,ˆ 1

j
j T I j T I

r Regions Iotarget

S I sim E T E I sim E o E rα β
∈∈

= ⋅ + ⋅ ∑
 target

target  (5) 

其中 α和 β为权重系数，满足 α + β = 1。该公式通过全局语义匹配与局部对象匹配的加权融合，实现对

复杂修改指令的精准建模，尤其适用于主体属性变更类查询。 

4. 实验结果 

为了全面评估不同技术路线在电商场景下的表现，我们在行业标准的 FashionIQ 数据集上进行了广

泛实验。 

4.1. 实验设置 

• 数据集：FashionIQ，包含三个子集：Dress (连衣裙)、Shirt (衬衫)、Top-tee (上衣)。共计 77,684 张图

像和 18,000 个训练三元组。本次实验遵循 Zero-Shot 协议，不使用 FashionIQ 的训练集，直接在验证

集(Validation Set)上进行测试。 
• 评价指标： 

• Recall@K(R@K)：目标图像出现在检索结果前 K 位的比例。这是电商搜索最关注的指标。 
• 平均排名(Mean Rank)：目标图像排名的算术平均值(越低越好)。 

• 基线模型(Baselines)： 
• Image-only：仅使用参考图像进行检索，忽略文本。 
• Pic2Word：代表文本反演流派。 
• SEARLE [ICCV 2023]：代表概念蒸馏流派。 
• CLIP4Cir：作为全监督学习的性能上限参照(Oracle)。 

4.2. 定量性能对比分析 

LinCIR 的高效表现：LinCIR 仅利用纯文本数据训练，其平均 R@10 达到了 38.5%，不仅显著超越

Pic2Word (28.9%)和 SEARLE (30.3%)，且在 Shirt 和 Top-tee 子集上接近全监督方法 CLIP4Cir 的性能。这

一结果验证了 3.2 节 SMP 机制的数学合理性：在 CLIP 共享空间中，通过文本变换模拟视觉变换的技术

路径具备可行性。对于中小型电商平台而言，LinCIR 无需图像数据与大规模算力支持即可实现接近 SOTA
的性能，具备较高的实用价值。 

https://doi.org/10.12677/ecl.2025.14124723


谢志伟 等 
 

 

DOI: 10.12677/ecl.2025.14124723 7211 电子商务评论 
 

Table 1. Performance comparison of different ZS-CIR methods on the FashionIQ Dataset (R@10/R@50) 
表 1. 不同 ZS-CIR 方法在 FashionIQ 数据集上的性能对比(R@10/R@50) 

方法架构 技术流派 训练数据 Dress 
(R@10/R@50) 

Shirt 
(R@10/R@50) 

Top-tee 
(R@10/R@50) 

Average 
R@10 

Average 
R@50 

Image-only Baseline None 18.2/38.6 15.3/32.1 21.5/45.3 18.3 38.7 

Pic2Word Inversion Weakly Sup. 25.6/52.1 28.3/51.5 32.7/60.1 28.9 54.6 

SEARLE Distillation Weakly Sup. 26.5/53.4 30.1/54.2 34.2/62.8 30.3 56.8 

LinCIR Language-Only Text Only 33.8/62.1 40.2/63.5 41.5/68.7 38.5 64.8 

MagicLens-B Synthetic 36.7M Syn. 35.2/64.0 41.5/65.2 43.1/70.1 39.9 66.4 

MagicLens-L Synthetic 36.7M Syn. 42.1/71.5 48.6/72.8 49.8/76.2 46.8 73.5 

CoTMR 
(2025) Reasoning LVLM 

Zero-shot 43.5/72.8 49.2/74.1 51.0/77.5 47.9 74.8 

 

 
Figure 5. Bar chart comparing model performance 
图 5. 模型性能对比柱状图 

 
如图 5 所示，各模型在 Dress、Shirt 和 Top-tee 三个子集上的 Recall@10 整体趋势与表 1 中的数值一

致。图示进一步凸显了 LinCIR、MagicLens-L 和 CoTMR 在不同类别上的性能差异，便于直观比较各类

方法的优势与适用场景。 
MagicLens 与 CoTMR 的性能优势：MagicLens-L 凭借海量合成数据，以 46.8%的 R@10 超越全监督

的 CLIP4Cir (43.6%)，这一结果表明，对于花纹、Logo 等复杂纹理修改任务，大规模视觉数据驱动的对

比学习能够有效提升细粒度特征的判别能力。 
品类差异性分析：所有模型在 Top-tee (T 恤/上衣)上的表现普遍优于 Dress (连衣裙)。从特征难度角

度分析，Top-tee 的修改多为图案、颜色等表层属性变更，特征维度较低；而 Dress 的修改涉及长短、裙

摆形状等几何结构变化，需要模型捕捉更复杂的空间特征。CoTMR 在 Dress 子集上的性能优势(43.5%)表
明，逻辑推理机制有助于提升模型对几何结构变更的建模能力。 
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4.3. 消融实验 

为了验证方法论中的关键假设，我们进行了两组深入的消融实验。 

4.3.1. 噪声注入方差(σ )对 LinCIR 性能的影响 

Table 2. Impact of gaussian noise standard deviation (σ ) in LinCIR on R@10  
表 2. LinCIR 中高斯噪声标准差(σ )对 R@10 的影响 

噪声标准差 Average R@10 相对性能 

0 32.10% −16.60% 

0.4 36.80% −4.40% 

0.64 (默认) 38.50% Baseline 

0.8 37.20% −3.40% 

1.0 34.50% −10.40% 
 

实验结果呈现出典型的倒 U 型曲线。当 0σ = 时，性能显著下降，这从实证角度验证了公式(1)中噪

声注入的必要性。它证明了文本空间和图像空间虽然对齐，但并非全等，适度的噪声扩张是实现跨模态

泛化的关键数学技巧。 
 

 
Figure 6. Inverted U-shaped performance curve with respect to noise injection 
variance σ 
图 6. 噪声注入方差 σ的倒 U 型性能曲线 

 
为了更清晰地展示噪声方差与模型性能之间的关系，我们在图 6 中绘制了 Recall@10 随 σ 变化的曲

线。从图中可以看到，σ ≈ 0.64 时性能达到峰值，与表 2 中的统计结果一致。 

4.3.2. 训练数据规模对 MagicLens 性能的影响 
我们测试了 MagicLens 在不同规模合成数据下的表现： 

• 1 M Triplets: R@10 = 32.4%； 
• 10 M Triplets: R@10 = 41.2%； 
• 36.7 M Triplets: R@10 = 46.8%。 

性能随数据量呈对数增长趋势，且未出现明显饱和。这一结果表明，ZS-CIR 任务的性能提升与训练

数据的规模和多样性具有强相关性，未来可通过生成更多样化的 Hard Negatives 样本进一步挖掘性能潜

力。 
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4.4. 系统延迟与工程部署实测 

在模拟的电商生产环境(NVIDIA T4 GPU，Batch Size = 1，索引库规模 = 100 万)下，我们对比了端到

端延迟，结果如表 3 所示。 
 
Table 3. Comparison of inference latency across different architectures  
表 3. 不同架构的推理延迟对比 

模型架构 查询编码(ms) 检索耗时(ms) 总延迟(ms) QPS (单卡) 适用场景 

LinCIR 18 ms 45 ms 63 ms 800 实时搜索、移动端推荐 

MagicLens-B 85 ms 45 ms 130 ms 150 PC 端搜索、精细化筛选 

MagicLens-L 145 ms 45 ms 190 ms 60 离线挖掘、高价值用户服务 

CoTMR ~2500 ms 45 ms ~2.5 s <1 智能客服 Agent、复杂咨询 
 

对于绝大多数 C 端实时搜索场景，LinCIR 是唯一能满足<100 ms 体验红线(Google RAIL 模型标准)
的方案。CoTMR 虽然精度最高，但秒级延迟使其暂不适用于搜索引擎召回层，更适合作为智能导购机器

人的后端推理引擎。 

5. 讨论 

5.1. 精度与成本的权衡 

电商企业在技术选型时面临“低成本、高精度、低延迟”的三元约束。 
LinCIR 代表了“低成本 + 低延迟”的优化方向。它无需维护庞大的图像索引(仅需存储 CLIP Em-

bedding)，且训练成本极低。对于中长尾商品和快速迭代的快时尚品牌，LinCIR 具备显著的实用价值。 
MagicLens 代表了“高精度”的优化方向。尽管其训练和推理成本较高，但对于头部电商平台(如 Am-

azon、Taobao)，检索准确率的小幅提升可能带来显著的商业价值，因此具备一定的投入合理性。 

5.2. 实际部署中的“否定”难题 

我们在错误分析中发现，基于 CLIP 的方法普遍存在“词袋效应(Bag-of-Words Effect)”。当修改指令

包含否定词(如“不要有拉链”、“非丝绸材质”)时，LinCIR 和 MagicLens 往往会忽略“不/非”语义，

检索结果与指令预期存在偏差。这一问题的核心原因在于 CLIP 的对比学习目标更倾向于捕获“存在性特

征”而非“缺失性特征”。未来可通过两种技术路径优化：一是引入更强的逻辑推理模块(如 CoTMR 中

的 Chain-of-Thought)建模否定语义；二是设计负向约束损失函数(Negative Constraint Loss)，强化模型对

“缺失特征”的判别能力。我们在错误分析中发现，基于 CLIP 的方法普遍存在“词袋效应(Bag-of-Words 
Effect)”。当修改指令包含否定词(如“不要有拉链”、“非丝绸材质”)时，LinCIR 和 MagicLens 往往会

忽略“不/非”等否定语义，导致检索结果与用户意图出现明显偏差。这一问题的核心原因在于 CLIP 的

对比学习目标更倾向于捕获“存在性特征”，而对“缺失性特征”和逻辑否定关系的建模能力有限。该现

象在已有跨模态检索研究中亦被观察到，相关工作指出，对“缺失性语义”和逻辑否定关系的建模仍是

当前跨模态表示学习中的重要难点之一[9]。 

5.3. 从搜索到生成的演进 

ZS-CIR 技术可作为连接检索与生成的关键桥梁。检索到的目标图像可作为生成模型(如 Stable Diffu-
sion)的 ControlNet 输入，生成商品在不同模特、场景下的展示图。这种“检索 + 生成”的技术闭环，有

望为电商内容生产模式提供新的优化方向。 
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6. 结论 

本研究对零样本组合图像检索(ZS-CIR)技术进行了系统性评测与理论分析，主要结论如下： 
1. 理论层面，通过特征流形几何分析与数学推导，验证了自掩码投影(SMP)和噪声正则化的技术有

效性，证实纯文本流形可通过结构化变换模拟视觉特征的修改逻辑，打破了对图像三元组数据的依赖。 
2. 实践层面，LinCIR 以极简架构实现了工业级实时检索能力，在训练成本与性能之间取得较好平

衡，是当前性价比突出的落地方案；MagicLens 和 CoTMR 则展示了合成数据与逻辑推理在性能突破中的

潜力，为技术演进提供了重要参考。 
对于电商企业，本文建议采用分层混合架构：利用 LinCIR 在边缘端或首层网络进行毫秒级快速召回

(Top-1000)，再通过轻量化蒸馏版 MagicLens 在云端进行精细化重排序(Top-10)。该方案在系统延迟、计

算成本与用户体验之间实现了动态平衡，为下一代电商视觉搜索引擎的发展提供了可行的参考范式。ZS-
CIR 技术已逐步脱离学术概念验证阶段，具备一定的大规模商业落地潜力，但在否定性指令理解、复杂

几何形变建模等方面仍存在优化空间，未来可通过多模态推理与数据增强的深度融合进一步提升技术成

熟度。 
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