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Abstract
While fresh food e-commerce is experiencing rapid development, it faces challenges such as high
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spoilage rates, high logistics costs, and complex inventory management. Accurate sales forecasting
is crucial for optimizing supply chain management. This paper addresses the sales prediction prob-
lem for fruit categories among fresh products. First, a systematic 30-dimensional feature system is
designed, including lag features, rolling statistical features, temporal features, periodicity features,
and external factor features, which fully considers e-commerce-specific influencing factors such as
promotional activities, holidays, temperature, and extreme weather conditions. Based on this, three
algorithms—Random Forest, Gradient Boosting Decision Tree, and Ridge Regression—are employed
and integrated using a simple averaging strategy to construct an ensemble learning-based predic-
tion model. Experimental results demonstrate that the ensemble learning model achieves an MSE
0f 0.00286, R2 0f 0.9075, and MAPE of 5.62%, showing significant improvements in prediction accu-
racy and stability compared to traditional time series methods and single machine learning models.
Compared with the moving average method, MSE is reduced by 63.6%, and compared with Support
Vector Regression, it is reduced by 75.1%. This research provides effective technical support for in-
ventory management and operational decision-making of fresh food e-commerce platforms, offering
significant theoretical value and practical implications.
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Table 1. Summary of the 30-dimensional feature system
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Figure 1. Flowchart of the integrated learning time series model
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Figure 2. Time series plot of daily sales volume for different fruit categories
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Table 2. Model hyperparameter settings
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Table 3. Performance comparison of different prediction models
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M3 AT LU Y, W [BlJRAE B S SR R IR I, JUHZAE MSE. R* A MAPE fig#r L, I [e]
IFA TR RCR S L5 o B LR THABEN AR R DA AT, (B — 2 2. s SRR ) MSE 4

DOI: 10.12677/ecl.2025.14124724 7222 1T 5508


https://doi.org/10.12677/ecl.2025.14124724

BT, Xk

0.00187, R?°40.9397, MAPE N 4.24%, FHEETH—AERY, S5l 2% ST AR 75 A2 0 1 R0 TR0 RS 52 1 e 2R
TREMRH.

— SERRME
—— Random Forest
—— Gradient Boosting
450 —— Ridge Regression
== Ensemble Model
400
I\
350
B
-
g 300
& x
40 h
i ! }
250 ‘A U ‘
\
A L J | !
UM |
200 {
'\ AW | f
{
VWY i Al f
(] N
150 “ MUY
q'1Rl |}
2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01

HEA

Figure 3. Comparison of prediction curves for random forest, gradient boosting, ridge regression, and ensemble mod-
els

B 3. BEHLARIR. BEEEIRFT. IRMEIVA. SRAARBURI TN L3S b E

3 R 1 VUM AE BN A R ERIXT b ATUAE B, SRR ST R T 4 50 9P, b
LS Besh, FRBIBERE: S1T7 B0 B e S i 4 BE 0 BE 5

—-= T
= Random Forest
150 ~—— Gradient Boosting
—— Ridge Regression
=~ Ensemble Model
100
g
550
R
| l \
% il | ‘ ) B ' ol v‘ l ’
H 04— MR A ,‘."“, AL 1 i L 1A 1""!‘4,“3‘u|1 M AN MWL TY S, | —
2 ' l‘ AR TV STV T S e Lr' M 1
| \
0 ‘ | |
: (
-50
-100

2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
HE

Figure 4. Comparison of residuals for random forest, gradient boosting, ridge regression, and ensemble models
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Figure 6. Comparison of prediction curves for moving average, exponential smoothing, support vector regression, multi-
scale GM, and ensemble learning models
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and ensemble learning models
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