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Abstract

Demand forecasting plays a critical role in inventory management, supply chain coordination, and
operational decision-making in e-commerce platforms. However, e-commerce demand data are of-
ten characterized by multi-scale temporal patterns, strong non-stationarity, and frequent fluctua-
tions, which pose significant challenges to traditional forecasting methods. To address these issues,
this paper proposes a novel demand forecasting approach based on multi-scale time series decom-
position and feature fusion. Specifically, the original demand series is first decomposed into multi-
ple sub-series at different temporal scales, capturing trend, seasonal, and irregular components.
Prediction models are then constructed for each sub-series to fully extract scale-specific temporal
features. Finally, a feature fusion mechanism is employed to integrate the multi-scale prediction
results and generate the final demand forecast. Experimental results on real-world e-commerce da-
tasets demonstrate that the proposed method consistently outperforms traditional statistical mod-
els and representative deep learning approaches in terms of MAE, RMSE, and MAPE. These results
confirm the effectiveness and practical value of the proposed approach for e-commerce demand
forecasting.
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Figure 1. Overall framework diagram
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Figure 2. Prediction fit diagram
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