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Abstract

In modern e-commerce systems, business requests typically exhibit significant heterogeneous
temporal characteristics. Different types of business operations (such as online payments, order
confirmation, real-time recommendations, and risk control) have differentiated service level
agreement (SLA) constraints, with significant differences in deadlines and latency sensitivity. This
characteristic makes it difficult for traditional request scheduling methods based on a unified
strategy to simultaneously balance system efficiency and service quality: on the one hand, unified
scheduling easily leads to high-real-time business requests missing latency constraints; on the
other hand, overly conservative resource allocation strategies result in inefficient utilization of
computing and communication resources, increasing system operating costs. To address these is-
sues, this paper proposes a heterogeneous graph neural network-enhanced deep reinforcement
learning scheduling framework for cloud-edge-service node collaborative e-commerce business
scheduling scenarios. This framework explicitly models the relationships between business types,
business requests, and computing resources in a constructed heterogeneous knowledge graph, en-
abling the graph neural network to effectively capture the dependencies between different business
requests, dynamic resource states, and business type constraints. Based on this, an entropy-regu-
larized adaptive scheduling strategy is introduced to achieve stable optimization of system sched-
uling performance and resource utilization while satisfying critical business latency and SLA con-
straints.
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