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Abstract

To address last-mile delivery challenges arising from the rapid development of e-commerce and
urban logistics, this study proposes a coordinated logistics trucks-unmanned aerial vehicles deliv-
ery method that optimizes both environmental sustainability and corporate profitability. Account-
ing for high timeliness requirements and geographically dispersed orders in e-commerce logistics,
we develop a coordinated truck-drone delivery routing optimization model incorporating carbon
abatement benefits is constructed. An improved K-means clustering algorithm is proposed to de-
termine truck parking locations, and a hybrid Genetic Algorithm-Simulated Annealing (GA-SA) al-
gorithm is designed to solve the model. Simulation experiments conducted using the classic Solo-
mon benchmark dataset verify the algorithm’s performance and compare the cost, vehicle kilome-
ters traveled, and carbon emissions across different delivery strategies. The simulation results
demonstrate that the proposed algorithm achieves high computational accuracy and speed. Com-
pared to traditional truck-only delivery, the coordinated approach reduces emissions by 54.01%,
decreases vehicle-kilometers by 56.67%, and lowers total costs by 4.65% on average. These re-
search findings contribute to enhancing the operational efficiency and economic benefits of logistic
trucks in e-commerce last-mile delivery, while providing theoretical underpinnings for achieving
the dual-carbon goals in the transportation sector.
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PEBEAE R T K Fe LL R I 12 it m, TRE AT Gl R, T8 2 Wi B gk i i Rl
AVESEMESR T R M EsR . 7R 0% H bR DL R SREVIREBUR SN R, DMK S5 N IRFE KRR G 37
RS SA . ZIRIE R S RO, R A RE TSI B 60% LA 1], A& Gekkih A RE
Ferm EEIEH, ME ARG Y. 2024 FEERRIR A BN AR B BRI, (RSB RILE] T 42.5%
[2], FEGRRI ZEAR SR i a S AT, RIS R R (I ECIE AR, D BRHER U552 5. TANARZ
HhTH A R, (HEEM. HESNARR, A aBRERMEE . EXFE T, TRgmmng:
ANTE AN W [F] BC A5 G 25 14 B EE RIS 3

I o A BRI R R ™ L, 4 B R IR AR 1) R LR A T AR TR AL s . H A Miller-Hooks
S (3] B RAEIABE IR AW N B AR A Y55 )5, Shen Z5E[41 00T LI T BRAS 5 L, 5K HBSE[510F 78 R B
53 B B BRI 78 AR ity T SR I8 SN SE LU o X SR FE A MDA A RS L B T B ) R SR
WAL THRAE EIAR S . BANBCIAEIR 250 T AMERFIER, Pt Sk ot o R 41, Hsk
J A 2 2R A N AU 2 B AR R 8. Sundar S5[6]%4 3 ANLERAL T FE REFE /MY, 25 FRpLER
RIS RO AESE . ) IE e[ 7152 HE DA S /MU BCI% I (] B AR AR Y 5 s v, B2 (8]
PR EL A5 B AR RN AT 2 AW H AR HESE . T A8 ZE[9]42 i NP-MTDDQN 54k 2% 2] 53, FF3RT
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AR AL LRI A . SRR A T L T 5 9 WA T s A B AT AL . K D REE[12] LA
TC 38 ol AR RTC I8 BN 1] (1) I ABORT S /MR B A, K 183 4% S50 S5 A0 VR AR 45 G R AR A SR A - ok SRS S5 [13] LA
BB RA AN H bR, Bt K-means 5 ek SOREO Ak i B S0 R BRI DL R AR A 0E 5[ 14] A
/MU B DN B bR, RS E R R4 bk R B ANUES 2 BE, DR THZENL D [FIRL
o XK EE[L5]) LA /IME I E A H s, @R E 5230 AW RIFFATIR A RIS, it T
PRI B & s VE IR 125 U TE AR T 20 7 T AR e . H AT C SR SRR Eh P RIS A R, E
% HAR P FIEL A A LA 7 A o

AR KZIO% 7 SVE AT AN 5, 448 K-means 505 HAE SRR FLLH RIS ME P ALE L,
G E AN PR ATHE B K TR AR 445, W ZE e Ve I T e 4, 3 R P [ 28R AR i
IR N T IRJOXA W, ASCHRH —Fhsdk SRR, fEARE K-means BE I EEAT E, IMATE AN
SRR A KA AR PR, L& S L], A IR e S s R AR . BRI A, O Sk
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Fi L - BPUR KL, $RESREEEE, A RR P RIRE TR .
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Figure 1. Conventional two-echelon vehicle routing problem
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Figure 2. Collaborative two-echelon vehicle routing problem
B 2. thEIRCX R R R0

FESRTTACIE W26 oy, o ks 5 42 I 1] 5 5K 1A A VEE Tl P PO 2 Y IRIE B8 . DR R, RT3
% 6 NI IRATAE S IR 5 X AT AR S D 15 B IR 55 5, R TE AL
s, HARME AR A BT RIS SR . DA EIIA T EE RS B e O R ., IR AR ST
Jihe e e SRR T AL HUEAT B ANG, FBAE S —dh . RGP B4R, A
A=A G TR o #8532 7 R T B R Bl T N A8, AR RO, By “ARE R s H
AR AT A BUOE ML R 3% W LR BT AN “ % w7 o AWPFONME TR, AR E
R (SEIRPEN DT

BEAt, AW TR R A S TS AL R BCIS B AR AL R A B I R AL (1) TR AL
iR RS (A R I B B s (2) RN  mUA BE AR AR B B AHLREAT — kR SS, IF B
75 SR A — AR /2 ANBEYF 735 (B) To AALAE B 47 b B 46 Fi it e B R0 B 460 PRl I ) s ot ] DA AN 5
(4) WA AT AL 75 2 R AU B B BR 1, P03 % — AT A 2 A B AL (B) EA
PUEREN T R BERI — I, B ANUERR R BEX — % PR LIRSS (6) B ANl — Ik HRERCIE — M2,
FERUESS G R BER IR A7 58 ml, EREDMEREN T — KT (7) R4 T AHUAE TR RE AT B
PEES Sy 2 R RS . WKL B ASEE Bk R

22. SRR
25 B P AT 5 A U BN 1 P, SIEBR SR 1 2 st B AR U STk [16]-[19]

Table 1. Mathematical notations and definitions
= 1. BB PNFS RiIRAA

e S TR TR
N P45 RS
o C B % milfidEs, C=C.uC,
" K WIS A, K = {01k}, O [RFEMLLM 5
Ce YIEE P
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Yk

Cy FRER T HES, CycK
Vv PR EIES, V={12V}
U FrA AR S, U ={12,u}
L TANUES S
R TN SRS
S ERTHRENRRH T T RIESLN)
Cootal SRA
Copera EHIEBRA
Cme I ] B A
Cearbon TR H S AR
Eptruck iy ZEICIE YR ZE BT FE LT
Erruck P RIECIE T Wi 4 BV AR IR AR
Exrone T MBI RER B
Fop ML Kz
P T NHLKF R 2h
Piown T NHLFE %
P(X) WA ZE A PR S IR Y
Ly T AL 6 B 35 e B ]

A Lo To N ZE B BT =5 B 1]
w TN R S () &
S, B n RSB Y 1, BN 0
d; VIR ZE T B T BT R AT IEE
d; T MU 1§ B0 6 j 1 K AT HE S
X§ PIRENT R ATHBT A j N1, B0
Vi TN R TR R j 8L, B0
ti PIZE T R T AT BT 2 AT B )
tj FTEINUMT 5T AT RN 2 I RAT I )
sV PO ZEAE 2 T AR SSBE TR 30 s
sV T NHLAEZ 7 A T A AR S5 B 11 60 s
el TEANUTEERRE i P IE R B ]
T YOI ZEAE 550 A T AR IS5 I TR
Petay LS PRI AE T LA 20 T/
D, T AL 64745 10 km

2 B &SI A) 22 %4 50 Jo/h
Pearbon RN 0.25 Jt/kg
Po 23 #E 0.03 L/kg
o WEIEE 0.1 Likg
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Q WAL ZE B KR 1300 kg
C fuel PRI BN 6.68 JT/L
Carone TEAMLEALFE B AL 0.3 Jt/km
Thruck YR ZE R T 2.6625 kg/L
Marone Y N HL T e HE JBCERL T 0.581 kg/kWh
ky TN 26 S P78 D6 H AR R 2 4 0.8554
k, TABKT AT PR T2 HAR Y 2 45 0.3051
¢ To NHUKE S Th T HAR R 2R % 2.8037
c, TABKTFIEAT PR DI R 5245 0.3177
Ca T NHUKP AT 2T S AR £ %K 0.0296
Cs T NHUKF AT 2T AR £ 4K 0.0279
a i 10°
Vv IR EIES, V={12 v}
U P TANIIES, U ={1,2,u}
9 = FH 4 9.8 m/s?
w TANLE S ¥ HE & 1.5 kg
Vip Te AHUEE KRS I3 5 mis
Viiown T NNLRETE R (R BE 10 mis
Vi TE MK IR RAT HIIHE 20 mis
2.3. EHEE
AR ) IR R S H0E L, IR DL A
MiN Cyyiai = Copera + Ciime — Cearbon @
Copera = 2 2 Cruet Ty X5+ 2 2 Corone -d; -ys )
veV (i,j)eA ueU (i,j)eA
Cearbon = Pearbon 'I:Ep—truck Mook ~( Etruok " Mrruck + Ecrone * Tarone ):| @)
( { d, d, H
Cime = B-| max z J “Xij» z J Vit z Pietay * n 4)
(i:7)eA Viruck (i:7)eA Varone neN
Etruck:z Z p(x)'dij'xi\; 5)
veV (i,j)eA
p(X):p0+uX (6)
Q
Egrone = Pip “tup + Pever “tiever + Piown *taoun (7
2
Pup:ki(W+w)g{\%+\/(%J +(\IV-|L-—2W)g]+C2|:(W+W)g:|§ (8)
2
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3
Peer =(C,+C, )[((W +W)g -, (v, cosa)’ )2 +(c4v§ )2}4 +C,V0 9)
2
V lown V lown W +W g E
Pdown:kl(W+w)g{ d2 +\/( d2 j +( 7 ) +cz[(W+w)g]2 (10)
t, = (11)
up
tdown :L (12)
vdown
s.t.
2 X+ D Y =LvjeC (13)
ieN ueU ieN
d;-yi <D,,VieK,jeCs, VueU (14)
> y; <m,VieK (15)
ueU jeCg
e =2-y; -t +s!,VieK,vjeC. ,YueU (16)
7, =max{e},e’, -6/}, VieK,vueU (17)
> > % <|S|-1LVS =C,|s|=2 VeV (18)

ieS jes

Horr, K()~(2)%m B BA T R (D)o B BA T MU, BFEEIZ A | B IR A e A ok
RQFREBEA, WFEDTFRE AT ANIZE A @) RoamapHa, 224 Rk
7 A BTSSP R RO B 77 2 R B HE I 22 S A e s S (4) i TRl pleAs , AR 1% R BT 58 Ak
i TR RTHE AR S 411 s A 3 5(5) s R BT 1S W3 2 T VR ARG OO A+ 5(6) s WAL 7 B 8 25 (O A ek Y
A7) RO FIBLE N RANFTEFER s @) FRAEANE €T3 ()RR ANAT AT
A (L0) R T AHLFF T D35 A (11) Ron Te AHUES KIS BIr & AR )5 X (12) s o AH LB Vi I P 7 B R 170
LR (13)3R 7 P48 R AL AR B ALV 1] — s 29 5R (14) PR sE AR M2 i P A A2 TE AL K AR
A5 Z1H(15) RS R TE ANLER IR 55 10 2 745 mUB SO SUHE D 2 B R B T AL S [ A 5 44
H(16)Fo o ANHUELIZ B KO AT I 1) 5 R 55 18 1) -2 A0 29 A0(17) oW ifi 4 1A B B 4 vh =25 i IR 55 412
TE IR SE L IEAT 5 U TE B RAT I TR BRI s 20 30(18) R/ BRI 4 B 4 o A DA 1 i 42
3. Jokigit

ASCFEZTFC NP-Hard 41L& LA, - FH P R BOR A sk i e Se LA 7 EA T I A B TR R, 1t
P B AR LA, S — B B P RN YA AR R S0 K-means 575, fER@% 7 mi o O T-4E0E,
SE B LD FE 55 B0 W Bl B A% SRR K SR RO s, SR HH TR a0 — BB K B,
SRV S NN FIBCIE I B4R ), AR IR R SR A e/ MK
31 RS

HT B BRI () K-means 377 208 1 115 € 970 HACE K, JEUINEE 2 ORI kNS4,
ERIPEAL B AR AL A R e KAl 4L 22 S e KAk . R SE K-means J83875 7 7 2L 356 e 70 415K
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Bk, AR AR R OB B B A L T SR B0 PR . AL B RO K IR, IR
AING . FBIA N [(g+1) . BAES T, 4 (g+1) MEaaf— AR —A — RO A AT
LA P OB TR, ATIIIE K B8 Ny /(0+1), TR 0 LR 117 5 S S13)
SRR A . LI SE LR F

IR 1 PIEEK. ARG SR TR R4 th AR R R P T B AL 1 3
W%, RGN K-means BB IR ST 0L, 3] K AIHG RO . SRR BR
2 SRR I S HOFTB

S8 2 PRI, KRR L B R BRI T AT A R R SR A, Rk
MR L A AL, T A RET L R WA BB 2SR B R 20 41, A 3E M TR P e, %%
IR A BEEAT T AN LR 7o 2, T HERE e T HOPEE T 25 2 75 3 A
B, AT AHLARE IR 0 LB A B 4, 75U 2508 3,

PR3 NN IR AT SRR R G AWLISARAE 0T, ARAE % P AR o B
S, (R A TE ARG . X T-HE P8 I A A R B, 36
SEEE DN L e T

SR 4 FEREF A SEBEOR AL . AT AUATRE IR . TE A MLB IR IR i s 4 S 0 1 S i
RS R . RIMBEE NN, (AR BB R R MIRTHE R, B0 A e  B
PR SRR AN SR HS B A S R S, AR B AT PR B VA

SIS EBEA IR, XA o AR S A MU BET & IR, D A DU % A
L% Ly LT SR REFEA  9F EL A, SRR & I B0 B MBI N AR 1O KRS, B IRA M
A SR (19) R X PR B T 77 R QU AUBA 2 4011 3 B AL 4 A IX

0, Hmoy1Ek2
u<i(m=1)/2, ZmREH (19)

m/2-1,  HmNE%

APR6 RIS R A T LR R R S RS .
A P B BT AR T A ML IE I S 2 RO B IR ], R SCRpESE R L B I Eh & A, W
BT RS IFRAL, TEERAIAGR N S R AN, PREFTA R 2 m R E IS 7 SRAS 23 2 -

3.2. RLthRIECX B

18 4% 59 (Genetic Algorithm, GA) A% O JE R TR HE Ak b AR e B A0 JEARL, ) P 3 V7 B kR 0ok i
BERARIANMA, DO ) 07 2U7E RV BB AR 2 A) LR B JE B 4 SR R . Il I s S 7E 440
PR, AR AL L HE A BEARE S RSB nt,  EIE A IS R AR PR, LR K
% (Simulated Annealing, SA)RH kAR 7, RABRGM RSB R, HEeRE R
7o R R AR AL BE IR R B SRAE BE /1, A SCR IR G ig A - BB K. %R & 5 GA 1)
Tt 22 FE I 48 ZORBETT R R GBI, SA 1) Metropolis #E AN B0 T, LSO 5 5 e S50 iff 52 AR A
T, DUR VRN e 2 5 0 S AR

(1) WEVHNSE: WEMBEE N =50, SAKHMARE M =200, 2 XM p, =09, LRHEE
P, =0.1, WIGHEBLURET =100, BKRE1=098.

(2) ARWIEEFEE: FIDTRIATE, P b KE k 5T FHERS % A8, RN ER R
1FFENT I B —A 50 x k I RFRERAAEVIMEFEE, XA YLt ik =4 1 3 k MBELHES, CRIE
FIT = A BB R BT [ 7 sV 295, ORAT 50 AN RIS R AR AW aa 8 &R a5 (Al
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(3) THEEANMARIE B 3 B R A R TE R0 VAR BRI, B0 AR R 3R s 12 et A kot IO P i LA o
UFIIREIE o T AW SE AR AL B br e MR A, i DK 24 (1) 15 BP0 S BOA (R (313 f, VR o i B AL
LI T ) 5 VE AR — 2L

(4) BHEH T BEEEQRRERE . 2 O T = /N5, AN 70 F 40 B R B R s Sk AR Ak B
Jett SRR & AMERDE RIE S E, RS BEALE R N AN MR SO — AU, kR AR R A
BB MR AT IR 28 XERAE, ¥ p, FAIIAEFRE, XA TR p, MERIATACHAL 5, X
BEAMRREATIE N VAT, 43 2GR, AIME .

(5) FREAUE KIEAE: $%H8 Metropolis #EI, HRHE IR L AT LK S BUFPBESE B o X6 3B 2 Rl o 35 A4 BT
A BHATERE A= f, —f o SHAEERM S S, A S RAESR, B%E p=e""
(MR 42 52 ALl o

(6) FUBIZe b6 t: MEARREGE R M B, A IR IR, e dRIE R A i 1) IMAE e AR A o
AR S AN I e AR PP SR I G- 6 4, B ANLESAR B ik i 45 Rk g o B IUHAT T, = AT, Bl
HIPIR(3).

4. EBI5Hr

T B A8 AT A i BRI E A, A SC L Solomon ¥ R101 451 Sy fith Sk g AR 1] Rt )
REE[20], ZEHE A 1 Solomon T 1987 4EH2 Hi (140 #it Benchmark $dE 45, B CL RN 5 IS 18] 2 4240 5 42
i R T AR AR o B A DR R S S 2 P M B A A R AR R il L, BEALAMEX 10~50 4N
FRGEAT SN, ARAE B TR SRR B R AU AR B R ], BN AT SRR AR, BUE N R R IE
B, RN RIEIT SR E .

4.1. ERSEENEIES

HGS-SA 5244 F python3.12 4T 4w FE , 1217 #8559 Windows 10 #:4E &4t , &b #2524 Intel(R) Core(TM)
i5-1035G1 CPU @ 1.00GHz. 4 T K 4 AHF 50 R PR REAL S,  AHF 90 R A R IR AR CPLEX fF %
SR, @ AR, %7 R 20 A1 S, CPLEX fE 3600 #0 N AN RefS 2 vl 47, ALk
ML 10, 15 A1 18 1 s AR ) = 4L A AT 2 B T

A SEIG S SCHR[21] 7 R E VA SRR HE, MRS K-means BVEAE VTGRS0 G,
BN AT I PTATPI E IR S5 s s S A G o IR AN LIRS, 7t R 1 P50 20 B P 4 ok 5
Fi o FEVHEXT U S B0 Hp F R ARAL SR fif 2% CPLEX XHARHERRAT 7 il AR B AT SR, VB N A 50 L 1 BB VT
WIS HARHE . SRIALE RN 2 FoR, AW BRI (E L CPLEX SEHE ) 8.74% . >4 4b H2 FIUBL i3 44 1) 1]
RSB, AT 5L B AR RR R E I N B, YIS R) D 2.25 P, 1 CPLEX I¥-F-I5I 8] 2y 26.67 5.
SCISERIE R, ARBIETERMR B E AR EAEA R

Table 2. Classical K-means + CPLEX versus proposed methodology
2. &% K-means + CPLEX SAMFIE AL Rttt

N f£4 K-means + CPLEX ENGI KRR .
R - - R o - FRAR BRI %
MEBWAT BHsEKkg MRS BEIBERAE BRECE kg ETS
R101/10 221.05 7.04 2.56 197.48 5.37 1.36 10.66
R101/15 208.78 6.60 4,14 196.60 4.44 2.23 5.80
R101/18 243.41 6.76 70.87 219.66 6.33 3.15 9.76
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4.2. MRESTANHEEE T

AW FE T B X SRR 4 BCIE A 45 e AHLD FIRC AT LLAL . 9 7 BALIPAS TE ABLEI AR
A0 R B2 S A IC IS AR B B Ik L 451 o 8 52 56 st T Hh L6 4 Solomon AR v 10K £ R101
130, 35. 40, 45. 50 /M IRy S AR )37 SR AT SEHE SR, 0 TSP A BCIA A e Bk B AR
PACAE . ¢ 3 AR T At U455, 141 3 BL R101-30 Jufil, A I T AL FA B A2 A0 285 SRk
PREIL P ) 328 SR A DAL RIOCR

o BELP A
%0 L o YREEEEX
. * EiERE

60

> 40 +

80

60

>~ 40 I

20

Figure 3. Comparative analysis of delivery modes

3. TEECERKARIFLER

DOI: 10.12677/ecl.2026.151049 382 TR 4TS


https://doi.org/10.12677/ecl.2026.151049

WA IR 2%

Table 3. Solution performance for diverse delivery schemes
7 3. TREIECERAITEL

eIy N e YRS T AHL I FICIE Al W
B ARG 0 Lk BBHER g b BRI 22 LK B9 AR 19 7 L AR/ T
R101/30  17.82 350.31 68.00 7.61 332.97 27.80 57.30 4.95 59.12 2.58
R101/35  19.07 363.05 70.40 7.52 351.94 26.60 60.57 3.06 62.22 2.89
R101/40  24.46 469.30 87.80 1151 454.83 39.60 52.94 3.08 54.90 3.24
R101/45  23.12 469.60 84.00 11.04 443.93 38.20 52.25 5.47 54.52 3.02
R101/50  24.63 524.67 88.60 13.06 489.66 42.00 46.98 6.67 52.60 2.89

SR

H7 3 vl 51, YDA 5 JE AL RO A A B 4% e it Al i 22 R A s s R I 2 . s
TN, PRSI AR B T SE i 2 e 1 FO B R HE R R 46.98%~60.57%, P HEEL B A 54.01%. M s A
KE, hIAIBCIER A AP A5, SRR 3.06%~6.67%, “T-¥J 154 Lhiil 4.65%, 4 HIMAE
Tk B THsk SR B A EE AR A . S ah, P E B A AR A R B R R, AR
HF#A% 52.60%~62.22%, V343> LAl h 56.67%. ZFE b AMERE R BUSHIBCR T, /8 L B
B AR AR BRAR . ASBE SRR ZE AN O AL P 5 O AR R B R RIS 2 A 2R & 1 4R AR,
SR B E AR TGRS A A o BRI RS ok B B i B AR, USRS . (HEA
FUE SIS E A FrIH BCA AT BARBI B, RIEHGE 71X 198 . R, Jo AN 2 E A i fR
WA T BB AL, A7 AR (1T B 2 (1 e /N T RRcHESU T B2 )

4.3. RS
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Figure 4. Variation trends of total cost and carbon emissions with UAV range
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