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摘  要 

为应对电子商务快速发展带来的物流配送挑战，解决城市“最后一公里”配送难题，提出电商环境下兼

顾环境效益和企业效益的物流车与无人机协同配送方法。针对电商物流配送时效性要求高、订单分散等

特点，本研究以总成本最小为目标，构建考虑碳减排收益的物流车与无人机协同配送路径优化模型，提

出改进的K-means聚类算法确定物流车停靠点，设计混合遗传–模拟退火算法求解模型。采用经典

Solomon算例集进行仿真实验，验证算法性能，对比分析不同配送策略下的成本、车公里数与碳排放的

表现。仿真结果显示，本研究所提出的算法具有较高的精度和计算速度，协同模式较传统物流车配送模

式平均降低碳排放54.01%，减少车公里数56.67%，减少配送总成本4.65%。研究成果有助于提高电商

末端配送时物流车的工作效率和经济性，为实现交通领域“双碳”目标提供了理论依据。 
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Abstract 
To address last-mile delivery challenges arising from the rapid development of e-commerce and 
urban logistics, this study proposes a coordinated logistics trucks-unmanned aerial vehicles deliv-
ery method that optimizes both environmental sustainability and corporate profitability. Account-
ing for high timeliness requirements and geographically dispersed orders in e-commerce logistics, 
we develop a coordinated truck-drone delivery routing optimization model incorporating carbon 
abatement benefits is constructed. An improved K-means clustering algorithm is proposed to de-
termine truck parking locations, and a hybrid Genetic Algorithm-Simulated Annealing (GA-SA) al-
gorithm is designed to solve the model. Simulation experiments conducted using the classic Solo-
mon benchmark dataset verify the algorithm’s performance and compare the cost, vehicle kilome-
ters traveled, and carbon emissions across different delivery strategies. The simulation results 
demonstrate that the proposed algorithm achieves high computational accuracy and speed. Com-
pared to traditional truck-only delivery, the coordinated approach reduces emissions by 54.01%, 
decreases vehicle-kilometers by 56.67%, and lowers total costs by 4.65% on average. These re-
search findings contribute to enhancing the operational efficiency and economic benefits of logistic 
trucks in e-commerce last-mile delivery, while providing theoretical underpinnings for achieving 
the dual-carbon goals in the transportation sector. 
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1. 引言 

伴随着国民经济发展以及网购的渗透率提高，我国电商行业飞速发展，消费者对物流配送的时效性

和便捷性提出了更高的要求。在双碳目标以及绿色物流政策的推动下，以低空经济为依托的低碳创新配

送模式成为趋势。交通运输是第三大碳排放源，其中公路货运物流占到 60%以上[1]，传统燃油车模式能

耗高、重复运输，加重城市拥堵和污染。2024 年新能源物流车虽然整体销量微降，但渗透率达到了 42.5% 
[2]，传统燃油车依然占据主导地位，因此提高燃油车的配送效率，减少碳排放是当务之急。无人机不受

地面交通限制，但续航、载重等仍有局限，不能完全取代传统的配送。在这种情况下，研究燃油物流车

和无人机的协同配送模式有着十分重要的现实意义。 
随着全球气候问题越来越严重，绿色车辆路径问题已经成了全球学者的研究热点。自从 Miller-Hooks

等[3]首次把环境因素纳入路径优化的范畴后，Shen 等[4]创新性地加入了碳交易机制，张旭等[5]研究发现

分段累进碳税机制在末端需求波动时更具减排效果。这些研究给物流业低碳转型奠定了重要的理论基础，

也提供了操作上的指引。无人机配送在很多场景下有独特的作用，物流配送领域的研究最为系统。其实

质是多约束条件下权衡多目标的数学问题。Sundar 等[6]建立无人机单位航程能耗最小化模型，给单机路

径规划提供基础理论框架。刘正元等[7]提出以最小化配送时间为目标的优化模型与高效算法，樊娇等[8]
构建包含路径效率和飞行安全的双目标优化框架。丁杰等[9]提出 NP-MTDDQN 强化学习算法，用于城市
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低空多无人机协同路径规划，在复杂三维环境中有效提升路径效率与动态避障能力。物流车与无人机协

同配送研究自 Murray 等[10]提出的 FSTSP 基本框架后取得显著进展，并且相关研究中 K-means 聚类算

法和遗传算法均被广泛使用。许菱等[11]融合爬山算子与分裂算子对遗传算法进行优化。狄卫民等[12]以
配送成本和配送时间的加权和最小化为目标，将遗传算法与构造算法相结合对模型求解。张文鸽等[13]以
总运输成本最低为目标，设计 K-means 与改进蚁群优化的两阶段算法求模型近似最优解。曹峰等[14]以
最小化总作业时间为目标，协同优化巡检车路径、驻车点选址及无人机任务分配，以此提升车机协同效

率。刘艳秋等[15]以最小化总运营成本为目标，建立货车与多架无人机协同并行混合配送模型，并设计了

两阶段启发式算法验证该模式在成本节约方面的优越性。目前已建立起算法驱动的协同配送体系，但是

多目标协同配送机制还需优化。 
现有研究大多把客户点作为无人机起降点，传统 K-means 算法只把聚类质心移到邻近的客户位置上，

常导致无人机实际飞行距离远大于理论服务半径，物流车在作业期间被迫停等，造成协同效率低和运力

浪费。为了解决这个问题，本文提出一种改进的聚类算法，在标准 K-means 算法的基础上，加入无人机

续航限制和最大作业数量限制，建立客户点分类机制，优化物流车停靠点的选择。除此之外，已有文献

中建立的多目标协同优化机制不系统，已有的模型不能很好地平衡成本、时效和碳排放的动态关系。因

此，本文以总成本最小为目标，基于考虑碳减排收益的物流车与无人机协同配送路径优化模型，采用混

合遗传–模拟退火算法，提高求解速度，得到最优的协同配送方案。 

2. 问题描述与数学模型 

2.1. 问题描述 

传统两级物流配送体系如图 1 所示。物流车装载全部包裹从仓库出发，经由中转站点完成货物转运

后原路返回；而后由无人机从中转站向终端客户配送，任务完成后重新返回中转站。然而在城市交通拥

堵条件下，难以满足时效要求。单纯依靠无人机完成末端配送虽具有时效优势，但因运力与成本限制，

易出现覆盖盲区且成本高昂。若是物流车与无人机协同配送，通过协同调度规划和路径优化，就能减少

车辆的无效等待，整合车辆大载重与无人机高时效优势，提升整体效能。因此，本研究提出物流车和无

人机协同配送模式，如图 2 所示。 
 

 
Figure 1. Conventional two-echelon vehicle routing problem      
图 1. 传统两级车辆路径问题   
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Figure 2. Collaborative two-echelon vehicle routing problem 
图 2. 协同配送两级车辆路径问题 

 
在城市配送网络中，中转站需按时间窗要求向辐射范围内的客户点派送货物。为提高效率，采用载

有多台无人机的物流车依次前往各服务区域执行任务。物流车停靠点既是车辆服务点，也是无人机作业

中心，其作业半径内的节点组成服务集群。车辆到达停靠点后需要完成该点的配送，并调度无人机服务

周边客户。车辆需原地等候无人机返航进行物资补给，再驶往下一站点。系统存在时间窗约束，超时交

付产生惩罚成本。部分客户点的订单因超重或需人工签收，必须由物流车配送，称为“特定客户点”；其

余可由物流车或无人机灵活调度的常规订单则归类为“普通客户点”。本研究为便于建模，按照包裹重

量作为客户分类的依据。 
此外，本研究提出的物流车与无人机协同配送路径优化问题还具有如下特点：(1) 所有客户点位置、

需求、服务时间及时间窗已知；(2) 每个客户点只能由一辆物流车或一架无人机进行一次服务，并且客户

的需求必须一次性满足不能拆分；(3) 无人机在货车上更换电池，装货和更换电池时间较短可以忽略不计；

(4) 物流车和无人机均需要满足续航和载重的限制，物流车一次出行有足够的容量和燃料供应；(5) 无人

机在每个节点只能发射一次，无人机每次只能对一个客户提供服务；(6) 无人机一次只能配送一个包裹，

完成任务后只能返回物流车停靠点，在每个集群内只进行一次飞行；(7) 物流车、无人机在两点间行驶的

距离分别用曼哈顿距离、欧几里得距离来表示。 

2.2. 符号假设 

给出模型中使用的符号及说明如表 1 所示，实验模型的参数设置依据文献[16]-[19]。 
 

Table 1. Mathematical notations and definitions 
表 1. 模型中的符号及说明 

符号类型 符号表示 符号解释 

集合 

N  所有节点的集合 

C  所有客户点的集合， F NC C C= ∪  

K  物流车停靠点的集合， { }0,1, ,K k=  ，0 代表配送网点 

FC  普通客户点集合 
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续表 

 

NC  特定客户点集合， NC K⊂  

V  所有物流车的集合， { }1,2, ,V v=   

U  所有无人机的集合， { }1,2, ,U u=   

L  无人机发射点的集合 

R  无人机回收点的集合 

S  任意子节点集的表示(用于子回路约束) 

变量 

totalC  总成本 

operaC  营运成本 

timeC  时间成本 

carbonC  碳减排收益 

p truckE −  纯物流车配送下物流车所消耗的燃油 

truckE  协同配送下物流车所消耗的燃油 

droneE  无人机所消耗的电力 

upP  无人机起飞功率 

levelP  无人机水平巡航功率 

downP  无人机降落功率 

( )Xρ  物流车单位距离的燃油消耗 

upt  无人机起飞时所需的时间 

downt  无人机降落时所需的时间 

w  无人机装载货物的重量 

nδ  客户 n 服务超时时为 1，否则为 0 

ijd  物流车从节点 i 到节点 j 的行驶距离 
ˆ

ijd  无人机从节点 i 到节点 j 的飞行距离 
v
ijx  物流车从节点 i 行驶到节点 j 为 1，否则为 0 
u
ijy  无人机从节点 i 飞行到节点 j 为 1，否则为 0 
v
ijt  物流车从节点 i 行驶到节点 j 的行驶时间 
u
ijt  无人机从节点 i 飞行到节点 j 的飞行时间 
v
is  物流车在客户点 i 处的服务时间为 30 s 
u
is  无人机在客户点 i 处的服务时间为 60 s 
u
ie  无人机在集群 i 内配送的时间 

iτ  物流车在停靠点 i 处的等待时间 

参数 

delayP  单客户超时惩罚成本 20 元/次 

uD  无人机最远飞行半径 10 km 

β  惩罚时间系数 50 元/h 

carbonp  碳价 0.25 元/kg 

0ρ  空载油耗 0.03 L/kg 
*ρ  满载油耗 0.1 L/kg 
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续表 

 

Q  物流车最大载重 1300 kg 

fuelc  燃油单价 6.68 元/L 

dronec  无人机单位距离成本 0.3 元/km 

truckη  物流车的碳排放因子 2.6625 kg/L 

droneη  购入电力的碳排放因子 0.581 kg/kWh 

1k  无人机水平巡航、起飞及降落功率计算模型系数 0.8554 

2k  无人机水平巡航、起飞及降落功率计算模型系数 0.3051 

1c  无人机水平巡航功率计算模型系数 2.8037 

2c  无人机水平巡航、起飞及降落功率计算模型系数 0.3177 

4c  无人机水平巡航功率计算模型系数 0.0296 

5c  无人机水平巡航功率计算模型系数 0.0279 

α  攻角 10˚ 

V  所有物流车的集合， { }1,2, ,V v=   

U  所有无人机的集合， { }1,2, ,U u=   

g  重力常数 9.8 m/s2 

W  无人机自身的重量 1.5 kg 

upv  无人机起飞时的速度 5 m/s 

downv  无人机降落时的速度 10 m/s 

hv  无人机水平巡航飞行的速度 20 m/s 

2.3. 模型构建 

根据问题描述和参数定义，可构建以下模型： 

 min total opera time carbonC C C C= + −  (1) 

 
( ) ( ), ,

ˆv u
opera fuel ij ij drone ij ij

v V i j A u U i j A
C c d x c d y

∈ ∈ ∈ ∈

= ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑ ∑  (2) 

 ( )carbon carbon p truck truck truck truck drone droneC p E E Eη η η− = ⋅ ⋅ − ⋅ + ⋅   (3) 

 
( ) ( ), ,

ˆ
max ,ij ijv u

time ij ij delay n
i j A i j A n Ntruck drone

d d
C x y P

v v
β δ

∈ ∈ ∈

    = ⋅ ⋅ ⋅ + ⋅     
∑ ∑ ∑  (4) 

 ( )
( ),

v
truck ij ij

v V i j A
E X d xρ

∈ ∈

= ⋅ ⋅∑ ∑  (5) 

 ( )
*

0
0X X

Q
ρ ρ

ρ ρ
−

= +  (6) 

 drone up up level level down downE P t P t P t= ⋅ + ⋅ + ⋅   (7) 

 ( ) ( ) ( )
2 3

2
1 22

22 2
up up

up

v v W w g
P k W w g c W w g

k

 +  = + + + + +       

 (8) 
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 ( ) ( ) ( )( ) ( )
3

2 2 42 2 3
1 2 5 4 4coslevel h h hP c c W w g c v c v c vα = + + − + +  

 (9) 

 ( ) ( ) ( )
2 3

2
1 22

22 2
down down

down

W w gv v
P k W w g c W w g

k

 +  = + + + + +       
 (10) 

 up
up

ht
v

=  (11) 

 down
down

ht
v

=  (12) 

s.t. 

 1,ij ij
i N u U i N

x y j C
∈ ∈ ∈

+ = ∀ ∈∑ ∑∑  (13) 

 ˆ , , ,u
ij ij u Fd y D i K j C u U⋅ ≤ ∀ ∈ ∈ ∀ ∈  (14) 

 ,
F

ij
u U j C

y m i K
∈ ∈

≤ ∀ ∈∑ ∑  (15) 

 2 , , ,u u u u
i ij ij j Fe y t s i K j C u U= ⋅ ⋅ + ∀ ∈ ∀ ∈ ∀ ∈  (16) 

 { }1 2max , , , , ,u
i i i ie e e i K u Uτ = ∀ ∈ ∀ ∈  (17) 

 1, , 2,v
ij

i S j S
x S S C S v V

∈ ∈

≤ − ∀ ⊆ ≥ ∀ ∈∑∑  (18) 

其中，式(1)~(12)表示总成本计算模型；式(1)表示总成本最小化，包括营运成本、时间成本与碳减排收益；

式(2)表示营运成本，包括物流车燃油成本和无人机运营成本；式(3)表示碳减排收益，是纯物流车配送时

产生的碳排放与协同配送时产生的碳排放之差与碳价的乘积；式(4)表示时间成本，包括配送系统的完成

时间和延迟惩罚成本；式(5)表示协同配送下物流车所消耗的燃油；式(6)表示物流车单位距离的燃油消耗；

式(7)表示协同配送下无人机所消耗的电力；式(8)表示无人机起飞功率；式(9)表示无人机水平巡航功率；

式(10)表示无人机降落功率；式(11)表示无人机起飞时所需的时间；式(12)表示无人机降落时所需的时间；

约束(13)表示客户节点仅由物流车或无人机访问一次；约束(14)限定集群作业覆盖半径在无人机最大航程

内；约束(15)表示集群中采用无人机提供服务的客户节点总数必须在物流车所载的无人机总数范围内；约

束(16)表示无人机配送总时长为飞行时间与服务时间之和；约束(17)表示物流车的驻留时长由当前服务单

元内最迟完成配送任务的无人机飞行时间决定；约束(18)表示消除物流车路径中的闭环子路径。 

3. 算法设计 

本文主要研究 NP-Hard 组合优化问题，用两阶段求解策略解决传统优化方法无法处理的问题。设计

两阶段路径优化模型，第一阶段用融入约束条件的改进 K-means 算法，把普通客户点分成若干集群，确

定最优物流车辆停靠点；第二阶段结合遗传算法和模拟退火算法的优点，提出混合遗传–模拟退火算法，

求解物流车与无人机协同配送的路径问题，使整体配送系统总成本最小化。 

3.1. 获取二级站点集合 

基于距离划分的 K-means 聚类方法通过预先设定的分组数量 k，把观测数据分成互斥的 k 个类别组，

它的优化目标为组内同质性最大化、组间差异性最大化。传统的 K-means 聚类方法需要事先确定分组数
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量 k，把每个簇的中心位置设为该分组内所有数据的平均值。本次研究得到聚类规模 k 的取值范围，上限

为 FN ，下限则为 ( )1FN g + 。理想情况下，每 ( )1g + 个点就会有一个集群和一个二级仓库点。为了满足

多种类型用户的覆盖需求，本研究将初始 k 值设为 ( )1FN g + ，把配送中心以及特定的客户点加入到初

始物流车停靠点集合中。具体的实现流程如下： 
步骤 1 初始聚类。用分层策略按货物重量划分出只能由物流车配送的客户点、可由无人机配送的普

通客户点，用改进的 K-means 聚类算法对普通客户点进行分组，得到 k 个初始中心点。最终得到的聚类

结果就是物流车停靠点的初步选址。 
步骤 2 停靠点位置优化。将每个聚类中心移动到最近的可行节点作为物流车停靠候选点。首先检查

无人机航程约束是否满足，对于不能满足最大飞行距离约束的普通客户点，将其从当前集群中剔除，转

为物流车停靠点。随后进行无人机作业能力审查，判断集群中目前的配送任务量是否超出单架次作业极

限。满足无人机载重限制的直接进入步骤 4，否则进入步骤 3。 
步骤 3 无人机数量限制处理。当集群配送需求超出无人机运载能力时，根据客户点和配送中心距离

由远到近排序，保留最远的客户点给无人机服务。对于排序靠后的超额客户点改为物流车直送模式，并

将这些点加入到物流车停靠点集合中。 
步骤 4 配送网点关联优化。根据无人机航程限制、无人机载重限制来确定各个集群的停靠点与配送

网点的关系。采用渐进移动策略，在保持集群规模不变的前提下，逐步把停靠点向配送中心或者特定客

户点靠拢。每次移动之后都要重新检验约束条件，只保留满足所有限制的位置调整方案。 
步骤 5 集群合并优化。对含 µ 个普通客户点的小规模集群执行合并操作，优先选择以特定客户点或

配送中心为基础的集群作为合并目标，按照就近合并原则将边缘小集群并入邻近的大集群，合并条件参

照公式(19)定义。利用动态调节的方法来创建规模恰当、分布合理的物流服务分区。 

 ( )
0, 1 2

1 2,
2 1,

m
m m

m m
µ


≤ −
 −

当 为 或

当 为奇数

当 为偶数

 (19) 

步骤 6 输出优化结果。最终输出满足所有约束条件的物流车停靠点集合。 
本改进措施在原有算法嵌入无人机配送的续航约束和数量限制，并支持停靠点位置的动态优化，可

自动进行集群合并优化，消除初始值对结果的影响，保证所有类型的客户点的配送需求得到满足。 

3.2. 优化协同配送路径 

遗传算法(Genetic Algorithm, GA)的核心原理源于生物进化中自然选择的思想，利用适应度函数来选

择最优的个体，以概率化的方式在大范围解空间里做自适应全局搜索。该算法已经被广泛地应用在车辆

路径优化领域，但是传统的遗传算法存在着早熟收敛的缺点，在迭代后期搜索效率降低。而模拟退火算

法(Simulated Annealing, SA)采用单点迭代的方法，具有较好的局部精细化搜索能力，但是全局搜索性较

差。为兼顾全局的优化能力和局部的求精能力，本文采用混合遗传–模拟退火算法。该混合策略用 GA 的

种群多样性搜索来避开局部陷阱，SA 的 Metropolis 准则做细致调节，以此改进方案的收敛精确度和求解

速度。以下详细阐述该算法的实现过程： 
(1) 设置初始化参数：设定种群规模 50N = ，最大进化代数 200M = ，交叉概率 0.9cp = ，变异概率

0.1mp = ，初始模拟温度 100T = ，退火系数 0.98λ = 。 
(2) 生成初始种群：用顺序表达法，染色体长度 k 等于需要服务的客户点数，基因的值表示物流车的

停靠顺序编号。创建一个 50 × k 的零矩阵来存储初始种群，对每个染色体产生 1 到 k 的随机排列，保证

所产生的排列满足所有的客户点访问约束，保存 50 个有效的染色体作为初始搜索空间。 
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(3) 计算个体适应度：适应度函数输出值采用正向评价原则，数值越大表示该染色体对应的解具有更

好的特性。由于本研究的优化目标是最小化总成本，所以将公式(1)得到的总成本的倒数 if 作为适应度值，

实现优化方向与评价标准的一致。 
(4) 遗传算子：遗传操作包括选择、交叉和变异三个部分，本研究用轮盘赌选择策略来优选个体。首

先计算出种群中各个体的适应度占比，按照概率随机选择 N 个个体组成新一代种群，对选择的种群中相

邻的两个个体进行顺序交叉操作，将 cp 子代加入新种群，对每个子代个体按 mp 概率进行交换变异，对种

群个体进行适应度评价，得到适应度 1if + 的值。 
(5) 模拟退火操作：按照 Metropolis 准则，根据温度调节机制完成种群更新。对新老种群中各个体所

在位置进行适应度计算 1i if f+∆ = − 。若新个体更优则直接替换，即 0∆ > 时发生替换，否则按照 e Tp ∆=

的概率接受劣化解。 
(6) 判断终止条件：当迭代次数达到 M 时，就停止循环，选择适应度最高的个体作为最优解输出，

根据最优个体的染色体序列构建物流车路径，无人机路径由选址的结果来决定。否则执行 1i iT Tλ+ = 降温

转步骤(3)。 

4. 算例分析 

由于目前暂无针对本问题的标准测试数据，本文以 Solomon 的 R101 算例为基础来构建本问题的测

试集[20]，该数据集是由 Solomon 于 1987 年提出的经典 Benchmark 数据集，现已成为带时间窗车辆路径

问题研究的标准测试基准。测试数据在保持原数据集客户地理分布特征的基础上，随机抽取 10~50 个客

户点进行实验，根据研究需求保留原始物流车载重限制，增加物流车行驶距离约束，取值为足够大的正

整数，补充无人机相关运行参数的设置。 

4.1. 模型与算法的验证分析 

HGS-SA算法使用 python3.12进行编程，运行环境为Windows 10操作系统，处理器为 Intel(R) Core(TM) 
i5-1035G1 CPU @ 1.00GHz。为了检验本研究算法的性能优势，本研究采用商业求解软件 CPLEX 作为基

准参照系。通过前期测试发现，在客户规模为 20 个节点时，CPLEX 在 3600 秒内不能得到可行解，因此

选取 10、15 和 18 节点规模的三组测试数据进行定量分析。 
本实验参照文献[21]的方法来确定初始聚类数量，用传统的 K-means 算法生成初始聚类中心后，调

整到最近的可行物流车服务点形成停靠点集合。根据无人机的约束条件，超出限制的部分由物流车来完

成。基准对比实验中用商业优化求解器 CPLEX 对标准旅行商问题模型进行求解，作为本研究算法性能评

价的参照标准。求解结果如表 2 所示，本研究算法解均值比 CPLEX 基准高 8.74%。当处理规模递增的问

题实例时，本研究算法能保持稳定的响应速度，平均时间为 2.25 秒，而 CPLEX 的平均时间为 26.67 秒。

实验数据证明，本算法在求解质量和计算效率上都具有优势。 
 

Table 2. Classical K-means + CPLEX versus proposed methodology 
表 2. 传统 K-means + CPLEX 与本研究的算法结果对比 

算例/规模 
传统 K-means + CPLEX 本研究的算法 

成本降低/% 
总营运成本/元 碳排放量/kg 时间/s 总营运成本/元 碳排放量/kg 时间/s 

R101/10 221.05 7.04 2.56 197.48 5.37 1.36 10.66 

R101/15 208.78 6.60 4.14 196.60 4.44 2.23 5.80 

R101/18 243.41 6.76 70.87 219.66 6.33 3.15 9.76 
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4.2. 物流车与无人机协同配送分析 

本研究主要是对纯物流车配送和物流车与无人机协同配送进行比较。为了量化评估无人机引入带来

的经济效益，主要考察两种配送模式的总成本削减比例。在实验设计中选择Solomon标准测试数据集R101
中 30、35、40、45、50 个客户的规模作为典型的场景进行基准实验，分别计算两种配送模式的选址路径

优化解。表 3 为不同规模下两种模式的求解结果，图 3 以 R101-30 为例，使用可视化的路径规划结果来

体现协同配送策略的优化效果。 
 

  

 
Figure 3. Comparative analysis of delivery modes 
图 3. 不同配送模式的求解结果 
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Table 3. Solution performance for diverse delivery schemes 
表 3. 不同配送模式对比 

算例/规模 
纯物流车配送 物流车与无人机协同配送 节省比例 碳减排 

收益/元 碳排放/kg 总成本/元 车公里/km 碳排放/kg 总成本/元 车公里/km 碳排放/% 总成本/% 车公里/% 

R101/30 17.82 350.31 68.00 7.61 332.97 27.80 57.30 4.95 59.12 2.58 

R101/35 19.07 363.05 70.40 7.52 351.94 26.60 60.57 3.06 62.22 2.89 

R101/40 24.46 469.30 87.80 11.51 454.83 39.60 52.94 3.08 54.90 3.24 

R101/45 23.12 469.60 84.00 11.04 443.93 38.20 52.25 5.47 54.52 3.02 

R101/50 24.63 524.67 88.60 13.06 489.66 42.00 46.98 6.67 52.60 2.89 
 

由表 3 可知，物流车与无人机协同配送模式相比于传统的纯物流车配送模式减排效果明显。数据显

示，协同配送相较于纯物流车配送的碳减排幅度为 46.98%~60.57%，平均减排比例为 54.01%。从总成本

来看，协同配送模式具有较好的经济性，总成本降低 3.06%~6.67%，平均节省比例 4.65%，节省的成本主

要来自于运输资源配置和配送路径的优化。另外，协同配送模式使车辆的使用强度明显降低，总车公里

数降低 52.60%~62.22%，平均减少比例为 56.67%。该指标不但能反映运输效率的提高，还能反映道路拥

堵率、车辆维护成本的降低。本研究把物流车和无人机协同配送模式的碳减排收益作为综合性指标，用

来衡量它相较于传统物流车运输的环境效益。碳减排收益主要来自用电力替代燃油，成效显著。但无人

机自身的运营成本、折旧及当前较低的碳价，大幅抵消了这部分节省。同时，无人机的载重和续航限制

也约束了其替代燃油车的规模，使得总成本的下降空间远小于碳排放的下降空间。 

4.3. 敏感性分析 

在实验中采用控制变量法分别对无人机续航里程、无人机载重量以及碳交易价格三个参数进行灵敏

度分析，探讨无人机性能及碳价对结果的影响。从 SolomonR101 算例中选取 30 个客户点为例，进行灵

敏度分析。 
 

 
Figure 4. Variation trends of total cost and carbon emissions with UAV range 
图 4. 总成本及碳排放随无人机续航里程变化趋势 
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图 4 结果显示，随着无人机最大续航里程从 15 km 增长到 30 km，碳排放逐渐减少，且随着无人机

续航里程的增加，碳排放下降的趋势逐渐减缓且趋于平稳。当无人机续航里程由 15 km 增加到 23 km 时，

碳排放下降趋势较为明显，下降 22.08%。而随着无人机续航里程的增大，总成本则是呈现先降后升，逐

渐趋于平缓的趋势。当无人机续航里程超过 23 km 时，总成本和碳排放几乎不再改变。这是由于当无人

机航程达到 23 km 时，其服务范围已覆盖算例中分布的绝大部分客户点，进一步提高续航能力虽能覆盖

偏远位置个别客户点，但因该区域客户密度显著降低，无人机的设备调度边际提升幅度有限，对系统碳

排放影响趋近于饱和状态。因此，当无人机续航里程增加到 23 km 之后，单纯延长续航已无法带来显著

成本或减排优势。 
 

 
Figure 5. Variation trend of total cost and carbon emission with maximum drone payload 
图 5. 总成本及碳排放随无人机最大载重变化趋势 

 
图 5 结果显示，随着无人机最大装载量从 0.5 kg 增长到 5 kg，总成本和碳排放逐渐减少，且随着无

人机最大载重的增加，总成本和碳排放下降的趋势逐渐减缓。当无人机载重由 0.5 kg 增加到 3 kg 时，总

成本、碳排放下降趋势较为明显，分别下降 4.77%、48.15%。当无人机最大载重超过 3 kg 时，总成本和

碳排放几乎不再改变。这是由于算例所包含的客户点中，有 93.3%的客户需求不超过 2.8 kg。因此，当无

人机最大载重增加到 3 kg 之后，无人机最大载重不再是限制无人机对客户进行配送服务可行性的决定性

因素。 
图 6 结果显示，随着碳交易价格从 0.25 元/kg 逐步提升至 2.0 元/kg，总成本与碳排放量均呈现下降

趋势。当碳排放量趋于稳定时，总成本依旧呈现缓慢下降趋势。这一现象可通过本研究所建模型的内部

机制得到解释：在目标函数中，碳减排收益是一项关键负成本项，其中碳减排收益是协同配送方案相较

于纯物流车基准方案所减少的碳排放量。当碳价上升时，单位减排量所对应的经济收益随之增加，系统

在成本最小化目标的驱动下，会主动强化低碳策略，例如进一步优化路径结构、提高无人机配送比例，

从而使得方案的绝对碳排放量降低。这意味着减排优势进一步扩大，其与上涨碳价共同作用的净效应，

体现为碳减排收益增加，并最终带动系统总运营成本下降。该结果实证了碳交易机制的有效性，合理的
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碳价信号能够通过经济激励引导物流系统在运营优化中自发实现环境绩效与经济绩效的统一。 
 

 
Figure 6. Variation trend of total cost and carbon emissions with carbon trading price 
图 6. 总成本及碳排放随碳交易价格变化趋势 

 
敏感性分析进一步揭示，无人机续航里程与载重能力的提升在一定阈值内对减排与降本具有显著促

进作用，其增强则直接决定了无人机可服务的订单范围。合理的碳交易价格能有效发挥经济杠杆作用，

激励物流系统通过优化运营决策，实现环境效益与经济效益的协同提升。从经济学视角看，碳价在此阶

段主要发挥了成本结构优化与决策激励的作用。它迫使系统在边际上权衡各种改进可能性，将资源配置

到最能降低总成本而不只是碳排放的环节，这正如现实中企业在面临刚性环境约束时，通过管理精益化

与运营挖潜来维持竞争力的行为。 

5. 结论 

本文构建了考虑碳减排收益的协同配送路径优化模型，并设计了混合遗传–模拟退火求解算法，对

不同配送模式下总成本、碳排放、总车公里数等方面的影响进行了分析。从实证分析结果可以看出，“物

流车 + 无人机”模式在环境效益、经济效益、运营效率这三方面都优于传统模式。环境效益上，无人机

电动化与路径优化减少了系统的碳排放；经济效益上，时间成本、燃油成本节约叠加碳减排收益形成复

合型成本优势；运营效率上，在电商促销季高峰期时，空中和地面协同机制提高车辆利用率和配送时效。

这些效益的获得本质上就是两种运输工具特性互补、时空资源系统优化的结果，对于电商物流而言，本

研究成果能提升电商高峰期的配送能力，有效应对大促期间的订单激增，响应消费者对环保配送的需求，

为电商平台布局无人机配送网络提供决策支持，促进电商企业实现绿色转型，为构建面向电商时代的智

能物流体系提供了新的解决方案。 
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