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Abstract

With the explosive growth of the live e-commerce industry, the compliance supervision of live
streaming content has become a key focus and challenge. Due to high background noise, fast speech
rates, diverse accents, and complex professional terminology (SKU) in live streaming scenarios, tra-
ditional Automatic Speech Recognition (ASR) technologies face bottlenecks in transcription accu-
racy, leading to high false-negative and false-positive rates in violation monitoring. This paper pro-
poses a real-time compliance monitoring method for live e-commerce voice based on Large Lan-
guage Model (LLM) correction. This method first uses streaming speech recognition technology to
obtain the original text, then introduces an LLM fine-tuned with e-commerce domain knowledge to
perform semantic error correction and context reconstruction on the transcription results. Finally,
it combines keyword matching and semantic analysis to achieve real-time identification of risk con-
tent such as exaggerated publicity and prohibited words under the Advertising Law. Experimental
results show that the Word Error Rate (WER) of this method on e-commerce live streaming datasets
is reduced by 53.3% compared to traditional methods, and the detection rate (Recall) of compliant
content is improved by 26.1%. This research effectively solves the problem of content risk control
in complex acoustic environments and provides a new technical path for the automated governance
of e-commerce platforms.
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1. 5|

AR, BERMTATESIRKE, ERFBRE OOy E 7RSI I K0 51 [1]. #AHK
SN, BRI S K, CRONERMMSTE R E N EEAN . R, ATk pE R
K pEpg “BmAK” WELR, &0 ERN TERmESEN, MEMEHSREL. BiukiniteiE
ST EEDY W ARANC[2] [3]. AR H TR FN G, WS-k 7 ERIEE AR S K E
JE 3. PR, dofal i ) B Y A AT SRR SR SRR I, RO H R T YA S BUR
I R A R ) S e )

OB H B UG BRI IR, SN TH % AR A = HACRAIRTS, BB AR AN
AR . HAT, FET E3hiEF R 5] (Automatic Speech Recognition, ASR) ) A 25 W Il £ 4t B 4125 N T-47
o A1, ELREH R S AR SRR B, EIRIE R R m o U s RS 3 3G ik, &
WA, Bgmn, HIRPRET T MBS RMATIE4]; FRK, HRE AR KRR 2 1 i 1]
(Brand) # 17 & $.47 (SKU) #4 7

TE FIRBE ARG, &G 3 ASR BT ME LU R A ) “EE” 5 “REEE” o BIRD
FUnASR NARZR A — AR LML 205 35 IR BIAE R 738 F 37 50 N S EUS 7 AR s BRI 36, (B T X L 4% [
A1) B e SR (AR« BEPRIR ™ RN “ RIPRIR” VA1 bR SCHRAH DG I AR B, AU 75 22 KR AE AT
WOIMNAAAE R IR YE, SECE RN RS “JRA7 80 “5A7 , okl SR g Rz &5 K .
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A, BE#EH s e AR E Rk R . T R & B E R, 8RR E
BEBR@A K7 RE 47 . R RE W) BRI BIE. X R RSO E
1FEETAL G AR R R B T L R R0 AR L I ) KR 22 RS A 2R (LMIMY) RT R ke 308 B A i
AR ER & FAMAR GRS, MR 6 K BRI S I F k. Bk, g —fh
REOR BA A& 4t ASR (i e S B2, SO A AR TS SCRRAA R ) BT A 4844, 72 A T Lol S 98 1 () B A A«

BEXT FIR A ASCHR M 7 AR T R AR TE 1) L 49 PR 1 SN S A M v . 1TV
PEHLAEE T <A + 38 URIE” IXUZ 42 :

Ao 5 U0 SR FH B B R B UR ¥ FUnASR HEZEAE R BL et Y, R A i Ol & A0 38 s
Rae iy, SEMN BRI PR 8 5 [5];

Je I v R IE: 51N Qwen (8 ST 10)) RS 5 AU Jy i SCRRAR 5138 [6] o FFH R AL 9 K1 | 7R SCHE
FRRE A B R AR, X ASR i tH R SCAREAT “ IRIEBE” 5B, BB E R EIT
W JFE X

HRH . ERIESCARR B b, S5G EVUECS S OB HERE,  SEBIN  JUTE AR A HE 2

ASCEE IR, R W B = N RE S TR (WER),  FFORIESE AN &
RS B2, Y B R R ReA e BRI AT A RN BRI T &

2. XTI
2.1. EEHEFRNRSAMKENIR

BEE B R AT e A e, A S R I oA 22 AR T S P R SE R A R . IR R
A A% B BN TR, IRy A i B R BRI AR SE R LA, X DA A2 SEI PEZER

AR, BaEMEARIZETE . BUA I LT %2 5 508 iR VLS (Keyword Matching) £ AR, R
iH3d OCR $EHUm [ 30 75 ASR e 51k & 3CA, -5 T A A5 B (0 (7 53 S48 28) i A7 IE I It
Beo PRI, SXRTTIAFAE & 1) R PR A -

BRZ R SCERE. A OB VLA R S S ORI . B, K CBRER ORI RN
T “H—7 X s,

BRRVEA L EEIEW AT, M58 ASR BORER 57 £ [7 & % (Homophone Errors). i1, BLA
WEFUR I, RS E AR, SRR CHORHE” FHRGORANTEE LT, SRR RGRRL.

IR O AR 7 S 2l 2B 52 20 (45 B U5 35 ) R ERTHR RS L, (H i & B TF AR IR
) 7 AR S SRS ST RO SN o BRI, G e AR AR B IR FE N SR T 4 RS I SCHERA
F R FURIHE K

22. BEHANRLES KRB

FELEE S R R BT SR G - BRE R AT RS (GMM-HMM), X AR AR R AE SR EX
FRE AR E o AR T A GETHRRAE , XE DA A 2% (1 Sl 7 B 5 VR B 2 ST R % e, 2T DNIN-
HMM [f)R AR 32T TR AR . dT4Ek, LA Transformer A1 Conformer JyAR3 i) )% (End-to-End,
E2E) 2R M BN L. el A Paraformer #5524, i i Tl %% (Predictor) FURAE % (Sampler) (B [F] TAE, SHL
TAEB BIAR S BRSO SR TE TR . SR, B R R Stk i) E2E AEAY, TR X [l S S
(Homophones) i A7 7E RSN, BRI FREAA R BT« midE “iE 30”7 HAT@EBN, fEfZ K
KT XARMIER T, o HI “EXFE” FIIR.

AU (GEC) [TUES LT T WFEET R Geitis 5 A4 (N-gram) 2 25 T BERT (145 7l (Masked
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LM) #3748 . BERT 288 BARTE FRLE L 6 RN 5, (HAE A B PR B9 o SARH AN A= ple xC A4 75 THI g
TR A ElRIE S8 (LLM) W1 GPT-4. Qwen %51 B AR T iX— 4% 5. LLM B4 am KBRS0
>(In-context Learning) f145 4147 (Instruction Following)&E 77, BENSHRTE B Bk 15 1854 I 1 A & T ) 3]
I, EZRAWEEREENRIR. RSN, FHZEEEEEBIZE LLM X ASR i i T “ —
YR, AB EREFIA LLM [t AR Rk ASR B A Y (8 Uk 2R, X — B RS I R IB 7 R 1E
B RN AT ML T BT [8]

3. &
3.1. RGR AN

ARSI E AR E S S I R S RS = MO, TEERACE SRR TR
R P SOR AR DU B MR P e

FRGTARRAR A LR 156, SR 3t 1140 B ) 7 S I 55 IR » 22 i 5 5 s Al (VAD)
Vo Je AN FunASR S SRR IR HE 5304 LU, R IR A6 SO Qwen (i SCT 1)) Kl S AR, I
BEXT RT3 5 B0 HA Prompt BEAT IR LM S A e, RHRIEJE SO S S AU EEREAT VLIS, e i
IR 45 2 T

VAD #&53R

F’L #ER -> SR
-

HU LS. SRR

i

=
ASR 3| (FunASR)
1RENESASE ->

EREEIR

A 4

(Live Audio
Stream) L WHRIASR (Traw)

Z
@ EXHIRY:
LLM 5/ (Qwen) B SHAEN IR

> A Prompt + Ty -> [~ FEXE —
\_ Eﬁﬂjﬁﬂfzﬁ.ﬁ (Tcorrected) )

Figure 1. System framework diagram

E 1. RGEZEE

32. BERNESEREIRS

BRI R L, N 7SR SHTE e, A SCIE BB B BE B F IR 1Y) FUnASR HEZRAE N 75 22
FEpE, BARCEF Paraformer #4544, 1X & —FPEE H [8] 9 (Non-Autoregressive) 1 i 21 i 18 & 1R A AR Y . T
AbER: R Fsmn-VAD 5580060 42 1) BRIt T U1 o, Kb s i B RA S0E S 0 # AR 5~10
FO & ST F (Chunk). #1285 K35 500 N\ Paraformer #5784, % W15 (I T T8 Trawe HT%
RS T FE 2ERp AR RS , XF T “BRIRER” (A A iE Bz “FIIRER” )35 [R5 1A v] RE A 7R 1R R
3.3. EF Qwen BB X KIE

AEAR IO . N TR UESE ASR S Z U AR E AL, FAT5] N Qwen-7B-Chat KiE &
BIRUE R« R IEAREE (Correction Agent)” o AT TH 7 —E L1 1194H2E7 THE[9] (Prompt Engineering)
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RTINS 55

Felg, g1 SRR e R DTS M IEF S 5w RGBT SeZeE, BE TR E PSR
DREA JEARE S e AR P A “ L) BUd BEAE . ARSI O Prompt B8R 4N R 46 1 s .
Table 1. Template for semantic correction prompt words in e-commerce live streaming scenarios
#* 1. EBEEHSR THIE RIERRR(Prompt) iR

System Role: /2 H, s 45tk ) AU % 5K

Instruction: N2 —BEBWRINEEHE T OR, HPWiea & FE R, B46 L R0 EE.

Requirements:

1. HAEIERMEA . P2 (0 MR . BURER) R AR ARG .
2. (REFEA)IIES R AL,

3. HEMHBIEERISCA, ANERH R

Input: [ﬁ)\ Traw]
Output: IR IR JS, 15 B SRS IE JG I SCA 751 Teorrected o

3.4. HEHMHIRIBE
RIS 1 B ISR Teorected J» RGUKH “HUN + B [0 S AS I ML <
AE RN VLA (Keyword Matching): ZE2ES () &vk) @E2E 0 “BERHE” « “mdk” « “®wE” .
“E—7 )E‘Jﬁﬁ@alﬂﬁo %Tcorrected *@é’?lﬁt%lﬂYEy ET&*EWEJ‘S] “%Nﬁﬁ” °
B X 53 B (Semantic Analysis): X1 U0 “X ARG Tt AeE ” (s i Th 20 S FaMgd E AR,
A Qwen FIHERERE 134T — 20 2P (B A ALY, AT SEBLH 5 5 B AL A A2
3.5. WBIFEE X HBEFER AL
AR SOKG B A FURE W I g SO — NI e A AR i S 40 2R in) . AR LR 1) T AR N
X ={X, X, % o Fer x NG t WU 7S 2R AL
F—FrB, FIH FunASR BB M, o B8 AL AR RS N 46 SRR A Y, -
Yo =argmax, P(Y|X; 6, )
Hrb O WAEFHAMSH . HTBRAETHR, Y, THRESHIREE={e.8e,.}.
FEL IIAKRESTEE My e (EAME R 8RR P (Prompt) MG SCA Yeaws B AR
SRR IE G ISCARY,, » 35 SOE T MR e KA
Ycor = Msemantic (Yraw’ P! eLLM )
BB, R RS R R o 1 BR B S BERI DL RN R RIS XA 2R28 Copaie 2K
Score,g = & Riyen (Yoo )+ (1—1)-C Y,

cor 'semantic ( cor )

2 Score, i, HL TR RAE 0 I, RS AE R E . IXPh o = @y 20E ROt il 1R A0 518 3
BRI 2L .

4, SLIGHER
4.1. IENGE

N T RAEAR SRR R, FATE T — D& JSL HiE SRR “Live-EC-Test” .
BRI LV BT 6 (B R BRI © 2 BT, B iRE, MR
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DAREPE . B wEs “SEMdrik” « “3CEUL” . “ERUCR” = RKmA A, BrKY
4 /NI o AEAER I, AMEA— NIRRT IT, AR SCIEEL 7 H A AR I M R AR AR, BT i
RGN 2 FE R BE AR A o ARvE TR XWEIAT T N LTS, JHRIE O 85 RFaM
WA Thsid 7 HAFERIER D “2ME—" . “TERIER” « “100%7 2" %),

BRAEELAT:

TR % (Word Error Rate, WER): T IPAG1E & 4% 5 BIMERA I . (kK Br .

F1-Score: F-T- 1Pt idi K P 26 W0 () 35 1k RE (TR S5 HEAF R Precision A7 [A1 % Recall)

TERR A EERY B, FRATRA T Fsmn-VAD RS K S AT U 4, T B ks — A 52 2 1 5) 7 1)
Wr, FRATBEE T 800 ms [H % RI{E (Silence Threshold), FK i kUl HEERHILE 1565 DAY . 7ERE A 3
JiTH, BT SEER I/ 5K NVIDIA A100 (40 GB) GPU 158/, ASR HEALRH FP16 -k 42 LU it
H. X Qwen-7B KA, FAMER T 4-bit &k (Quantization) i RIEAT N, K BA7 5 FHM 14 GB &
4% 6 GB fidy, MIMISREL TIE—3K I PR LRI EE ASR Al LLM [WRTREVE . X 40 7
X TR T & RIS E ARG EESENE.

4.2. BERBHRT

BATEA IR “FunASR + Qwen BIE” J7: 5 “J5 4 FUnASR” J7i5idb AT T %t EL . Szak &5 B
2R,

Table 2. Comparison of word error rates (WER) of different methods in three major live streaming categories

2. FRIFEEZRERBETHFHER(WER)X L

HEmE JR#f FUnASR (Baseline) A3 5 (FunASR + Qwen) ST E
FMdr Ik 18.4% 8.2% 155.4%
3C %y 15.6% 7.5% 151.9%
m OB 16.2% 7.8% 151.8%
34 WER 16.7% 7.8% 153.3%

ML 2 T PLAEH, JRIG FunASR R B IE TR N ELIR A Se it T2 245 R (16.7%), - B R IR 2 EL %
(B 1 53 Ok TP L B AR R E T ARE (St lisr. #5250, 51N Qwen KIRAIIETE Y IE)S,
WER &3 TP ZE 7.8%., X RIIKEAEHO A H R 5 B IE T KERIFE S 5 AR .
4.3, BN IEERAYERL SIS

N T BGAEAS R LY H ARG R G RE RIS, FRATT I EE T e B . 44 N-gram 2445, BERT 2445
DL R A S A FH A Qwen-LLM 2485 DY Ff 7 %2

Table 3. Comparison of ablation experimental results with different error correction strategies

= 3. TR RIRHYHAL I A R X EE

J7¥% (Method) BASHE P FHF(WER) HEHEFEIR (Latency)
Baseline (FUNASR Only) - 16.7% 200 ms
+ N-gram Language Model <100 M 15.2% 210 ms
+ BERT-Correction 110 M 12.4% 350 ms
+ Qwen-7B (Ours) 7B 7.8% 850 ms
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KIS HE R (WA 3), L0 N-gram RS il Tk Z KBRS, X WER S0 Sl P HL i (I A
1.5%). BERT MERYFEREE 48 A 741 IE ARG, (HAET B LIS PR, mE MR g, Hilhe
I MHEZT, Qwen KA BARZ MR ERSBUEIRIE N, (Hirk 78R W R T (R R
7.8%) 0 IXUEH] 1AL G MU IR Ah s UK B 5T, 0 2D 10 S P D B veops 11 SCER AR R (B A5 10

4.4. SRR ITN

ERPER I AZ AT AR o BATREEE TSR BRSO 5 i A AT UL, JF 52
TR 46 ASR SUA UL ECE SR BEAT XS HL

Table 4. Accuracy and recall evaluation of compliance monitoring

=4 BAMENEERES B R EITM

BE W5k (Method) HERZR (Precision) A A2 (Recall) F1-Score
JE#5 FunASR (Baseline) 72.5% 68.4% 70.4%
A3 (FUnASR + Qwen) 89.2% 94.5% 91.8%

N 4 s, AT A FIZR (Recall)is B 7 94.5%, it TR TT1LN 68.4%. XEHWEL KL
FoE IE AR R RGRTNH IR . A EFEWREIRT A TR —EE TS RN T
SRBEA IRAS s 2 Qwen AR IIE Sz AbRE J), AL RERE PN HE AR AR I FLTE R (9 s R T
HOULLE, LX) R R PR Ao A 2R T AR ) o

BBA, R R BILE A AT 25 R 5y e A 40t B O R IR BIRRE, 36 4 HhEis 89.2% M HER R
(Precision)$& it TH J1 [ UE « XK RGIELRFF mBUBLEEMI A, AR RGN EH 5. BAREITE
DA A

1. ESEMAE MRS FEL T E(R IS FUnASR + SCHE) A S B B EEL L o B, &R
CERATVEAGE SR OCHE, AT RS, FEH TR IR “ BARE AL BRI T IR . A
7% (FUnASR + Qwen)#ERRELAR T “4iAR” M5B S, EAENE .

2. IEERMEEHAGI TR RATWER], KRG X 057EEHIE ARG “HREIL”)S5EM
FR 40 o A AR (N “ TR R B v R B Yo 42 4 T 89,2914 e VEERF 28 A1 B T AR I ok IR Ay S v 72 [ T
XPIEEREA RN R ST, A BANH] T R .

45. RIS

N EEMM R REIERCR, FATE R RIREA AT . & 5 Jon 1 EAR R R L U0 B
WA SCTHENB IR R

Table 5. Case analysis of typical speech recognition errors and semantic correction
= 5. BANEFIRRIEIRSIENRERGI S

RS Original Audio) A FUMASRFUBIAER  Quen AMRELR  SUSHEISR

(Baseline ASR) (LLM Correction) (Risk Label)
...... BT — e e R AR HIA - o B N - Lt 5 3 (XL S
...... B S R IR O A )y e RS R AR HIR)
------ FAT SRR -wooee oo AT RS wooee oo AT O RBNER - SRR
...... PR A TR v B b 5 O - b IR L)
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R 5 ATBLE Y, Jie ASR kR 7 L Mgy SRR MR BN RS T, B FEUX
PERGURM . AR R “Wri” 7 BN R T HSGARE L, A 1A HvE .

5. R4

AR SRS BRI R N R R R R S M ARAE VR AR T B T U A R A R 2 el
P T —Fh “HET FunASR JiaUIRA] + Qwen RAERIE AR IE” (SRi A% 77 58 10 i i g 0 5 v 7 400
R Prompt $78 THE, 5 200F K08 5 AL B SCHEFRBE J16E ASR 365 45 JLilk T T UaE e
5B .

SIS, Z IR E SR E AR SRR R E R T AL G L A

R EAREAE: T TFHR(WER)M 16.7%KKE 7.8%, ARUAR T “BIRER” . “Bfp” Zepdq
PR A (14 [ 5 13 TR ) R

T AN 2 A 91 2R (Recal )3 THZE 94.5%, KME /D 1 R 5 45R S BT IR XU,
BOUE T ARTE A 2P 2 d A% S F 1

AW TN T AT e e B IR . HO, ARG R B N TH i TAE,
RERRTF G E AR HK, mks B ST TS L) A 55 B i SAE BRI AR o RIR 2 IS RE A, 3
()T ER) BT 5P EE SR &, ZEORTT RIS, TREE R 2R iR . P S b
S HLAth R R 5 B FH 3 5 [10]

OGRS RS T AP IR, (EE— g R k. Bk, KRB 51N BARIRTH T 2,
BN 7 RS R S HEEAE IR (Latency), AR E, FunASR BRLXT 10 #0355 i) A i)y Ab
FERF 2175 200 ms. 51 A Qwen-7B RS FEAT I A HERE f5, 22 40 (1 vy ) iy P 35 1B AR 1 I A2 2 850 ms. L AE
RGBT, AR AR TAT A “5 APRDES R & D, IR e ST (G A B (3 5 B
DIWr BRI ). 7R R R R N AT BRI MRS, ok, H AT R TR SRS, BT H
78 188 ] R R ASE A B (SO . FREFA).

AR HIBIEFE TAEANS B AE LU RN Ty 1)«

R B IRRETZE0E (Knowledge Distillation) S =ALT AR, 75 PRFRAY 5514 BE I [R] B B 75
K, L& RIS

ZRASRAG: SIS AT E(OCR 5aI{EIRA), M “& - M - 307 — i) RS A HUE I
MESE, E—DIRTHE A A 5T A8 A [11].
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