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Abstract

To address the high latency and low reliability issues faced by traditional short-range wireless tech-
nologies in scenarios such as smart cars and industrial control, namely the “determinism gap”, this
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article systematically analyzes the new generation of NearLink wireless communication technology.
The article first analyzes the core technologies used by NearLink to achieve deterministic communi-
cation, including its centralized scheduling mechanism, SLB (SparkLink Basic)/SLE (SparkLink Low
Energy) dual-mode access architecture, and a physical layer design that integrates Polar codes and
HARQ (Hybrid Automatic Repeat reQuest) mechanisms. The analysis results show that through the
above design, NearLink has achieved significant improvements in key performance, with an air in-
terface latency of less than 20 ps, a transmission reliability of more than 99.999%, and a peak rate of
up to 920 Mbps. Currently, NearLink technology has been initially commercially applied in consumer
electronics, automotive electronics, industrial control and other fields, and the relevant industry
chain and ecosystem are being built. This article believes that NearLink technology provides an ef-
fective solution for application scenarios that require precise synchronization and high-reliability
interaction, indicating that short-range wireless communications are evolving from a “best effort”
model to providing predictable services, and have good application prospects.
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Figure 1. Schematic diagram of NearLink centralized scheduling mechanism
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Figure 2. NearLink protocol stack and SLB/SLE dual-mode architecture
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Figure 3. Schematic diagram of the NearLink ultra-short frame structure
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Table 1. NearLink 1.0 technical performance summary
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Table 2. Comparison of performance parameters of mainstream wireless communication technologies
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Figure 4. NearLink development routine timeline
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Figure 5. FreeBuds Pro3 with NearLink
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Figure 6. Schematic diagram of NearLink communication for in-vehicle equipment
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Figure 7. Industrial sensor NearLink control diagram
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Figure 8. NearLink home appliance interconnection
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Figure 9. Schematic diagram of hospital NearLink communication deployment
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