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摘  要 

光谱反演技术通过解析污染介质对电磁波的吸收、反射和散射规律，实现污染物浓度、组分及生态相关

指标的定量化估算，是现代环境遥感监测体系的核心方法。近年来，随着高光谱卫星(如GF-5、PRISMA、
EnMAP)、机载高光谱传感器以及无人机搭载超高分辨率光谱系统的迅速发展，环境污染光谱反演的研

究快速发展，从传统的经验统计模型、光谱指数方法，到数据驱动的机器学习模型、深度学习网络，再

到物理–数据融合模型体系，光谱反演技术正从“基于经验”向“基于机理与智能”方向系统演变。然

而，环境污染反演仍受到光谱混合效应强、污染介质异质性复杂、辐射传输模型不确定性大、多源数据

尺度不一致、模型跨场景泛化能力不足等问题制约。根据文献和未来管理应用场景需求，本文认为未来

的发展方向包括：构建深度耦合物理意义的智能反演模型，实现跨区域与跨季节的稳健预测；发展高时

间分辨率与高空间分辨率的多源、跨尺度融合方法，实现水体、大气、土壤污染过程的连续监测；利用

边缘计算与卫星在轨处理能力，推动环境污染遥感反演向实时化、智能化发展。 
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Abstract 
Spectral inversion techniques quantify pollutant concentrations, compositions, and ecology-related 
indicators by analyzing the absorption, reflection, and scattering characteristics of contaminated 
media to electromagnetic radiation. As a core methodology in modern environmental remote-sens-
ing systems, spectral inversion has advanced rapidly in recent years with the development of hy-
perspectral satellites (e.g., GF-5, PRISMA, EnMAP), airborne sensors, and ultra-high-resolution UAV-
mounted spectrometers. Research now encompasses a progression from traditional empirical and 
spectral-index-based approaches to data-driven machine-learning and deep-learning models, and 
further to emerging physics–data hybrid frameworks. This evolution reflects a broader shift from 
“experience-based” to “mechanism- and intelligence-based” paradigms. However, environmental 
pollution inversion remains constrained by strong spectral-mixing effects, pronounced heteroge-
neity in polluted media, substantial uncertainties in radiative-transfer modeling, scale inconsisten-
cies across multi-source data, and limited cross-scene model generalization. Based on existing lit-
erature and anticipated management needs, we argued that future developments should include 
constructing physically grounded intelligent inversion models capable of robust prediction across 
regions and seasons; developing multi-source, cross-scale fusion methods with high temporal and 
spatial resolution to enable continuous monitoring of water, atmospheric, and soil pollution; and 
leveraging edge computing and on-orbit satellite processing to advance environmental pollution 
inversion toward real-time and intelligent applications. 
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1. 引言 

环境污染已成为制约全球人类健康、生态系统稳定性以及经济可持续发展的重大因素[1]。污染物在

空气、水体、土壤等环境介质中持续积累[2]-[4]，并通过大气沉降、径流输移、生物累积等路径产生跨介

质迁移效应，使污染监测面临显著的空间非均质性与时间动态性挑战[5]-[7]。传统监测方式依赖地面点位

采样，尽管精度高，但覆盖范围有限且成本高昂，难以满足国家对大范围、持续化、快速响应环境监测

的需求，亟需高效、精确且空间连续的监测手段来刻画污染源、扩散模式及其强度[8]。 
光谱反演技术(spectral inversion)作为依据光谱观测信息反向估计污染物浓度或相关物理、生物指标

的方法，正逐渐成为环境污染监测的重要技术路径。其基本原理是：污染介质通过吸收和散射特定波段

的光，形成可被遥感传感器识别的光谱特征，进而通过物理模型或基于大数据的统计与机器学习模型估

测污染物浓度与生态环境参数。如图 1，在水体检测中，高光谱影像可用于反演叶绿素 a、悬浮物及营养
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盐含量[9]；在大气污染领域，卫星获取的气溶胶光学厚度(AOD)可用于估算地面 PM2.5 浓度[10]；在土壤

污染及相关研究中，反射光谱则有助于提取重金属等污染物的特征信息。早期污染监测多依赖中低光谱

分辨率的多光谱卫星，受限于波段设置与光谱连续性，反演精度相对较低。随着国内外高光谱卫星如 GF-
5、PRISMA、EnMAP 陆续投入使用，光谱反演技术在光谱信息维度、空间分辨率与时间覆盖能力方面得

到全面提升，但其反演精度仍受光谱混合、背景干扰及辐射传输不确定性等因素影响[11]。为弥补单一光

谱或单一遥感平台的局限，多源数据融合(data fusion)技术在环境污染反演中的价值日益凸显。通过整合

卫星、无人机、地面监测、气象数据和模型模拟结果等多模态信息，融合技术可改善反演精度、提高时

空分辨率并增强结果的稳健性[12]。例如，卫星烟雾指标与地面 PM₂․₅数据的融合有助于量化野火贡献；

而大气模式产品与遥感观测的联合反演也被广泛用于构建高分辨率污染浓度数据集，以支持健康影响与

环境公平性研究。 
本文基于最新文献与研究成果，从水体、大气、土壤污染三个主要领域系统梳理光谱反演的研究进

展，剖析反演模型体系的演化趋势，总结多源数据融合策略及应用，同时重点分析当前反演技术在异构

数据的协同配准、反演模型的不确定性传播、传感器–算法链条的联合优化方面面临的核心挑战，并提

出未来应重点聚焦高光谱与超光谱遥感、新型多平台观测体系、人工智能驱动的反演融合框架，以及在

气候变化背景下提升污染反演的适应能力等研究方向。 
 

 
Figure 1. Comprehensive technical framework for environmental pollution spectral inversion 
图 1. 环境污染光谱反演总体技术框架 

2. 水体污染光谱反演研究进展 

水体污染光谱反演技术近年来在遥感领域发展迅速，其理论基础源于水体组分对可见光至近红外辐

射的吸收—散射行为[13]-[15]。叶绿素 a、悬浮颗粒物和有色溶解有机物(CDOM)是影响水体光学性质的

三类核心因子，它们在光谱空间中展现的特征为反演模型提供了重要依据。例如，叶绿素 a 在蓝光区(约
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440 nm)表现强吸收，并在红光区域(约 665~675 nm)形成典型吸收谷，其后在近红外约 700 nm 出现荧光

肩峰，这一特征在国内湖库水质监测研究中已被多次验证(如太湖、巢湖研究显示其浓度变化与蓝光吸收

峰高度呈显著正相关) [16] [17]。悬浮颗粒物通过增强 600~900 nm 的后向散射使整体反射率升高，CDOM
在 350~500 nm 范围呈现随波长增加快速衰减的指数型吸收，这在长江中下游河段光学测量中得到明确体

现[18]。 
随着高光谱遥感和多平台观测技术的成熟，用于水体分析的数据源体系逐步跨越卫星、机载和无人

机尺度。星载平台如 Sentinel-2 MSI、GF-5 AHSI、PRISMA 和 EnMAP 提供从区域到流域尺度的连续监

测能力，其光谱连续性和区域覆盖性使其在大中型湖泊、河网、水库及海岸带的水色反演中发挥关键作

用[19]-[21]。无人机高光谱影像以厘米级空间分辨率弥补了星载影像在小微水体、沉积物羽流、近岸带生

态交错区的不足，以三峡库区御临河为例，虽已利用 Sentinel-2 等星载影像结合机器学习实现流域尺度水

质反演，但在小微水体、沉积物羽流和近岸带生态交错区仍受空间分辨率限制，而无人机高光谱影像凭

借厘米级分辨率在此方面对星载平台形成有力补充[22]。地面光谱实测则承担“真实光谱–水质”匹配

样本构建，通过光谱响应函数(SRF)卷积实现多平台一致化，为模型校准提供高精度基准，这在鄱阳湖与

太湖的水质反演研究中均有应用[23] [24]。表 1 系统总结了不同观测尺度的优势与局限性。 
 

Table 1. Advantages and limitations of different observation scale methods for water body spectral inversion 
表 1. 不同观测尺度水体光谱反演方法的优势与局限 

观测 
尺度 典型平台/设备 应用案例 优势 局限性 参考 

文献 

卫星 

Sentinel-2 MSI、
Landsat-8/9 OLI、
Sentinel-3 OLCI、

HY-3A CZI 等 

太湖等大型湖泊 TP 反演、 
农田与城市河网 TN/TP 

监测、河流 TP 大尺度估算、

全球/区域湖泊 Chl-a 反演、 
城市水库和河流多参数 

水质监测 

区域覆盖范围广，可获取长 
时间序列和大范围水质信息；

光谱与时间连续性好，便于 
开展多时相、跨流域对比 
分析；适合构建机器学习/ 

深度学习的大样本训练数据集 

空间分辨率有限，相对窄小 
河道、小微水体与近岸带的 
混合像元问题较突出； 

受云雾、大气校正和传感器 
配置差异影响明显，在高度 
浑浊或极清水体中容易出现 

饱和或不确定性 

[18]-[22]  
[24] 

机载 

机载高光谱成像仪

(如 AVIRIS、CASI
等)，机载多光谱 

相机 

中等尺度湖泊及水库水体 
光学性质调查、湖泊碳组分 
和 CDOM 精细分布、复杂 
水体类型区域化算法验证 

光谱分辨率高、带宽窄， 
可获取连续可见–近红外 
光谱；飞行高度相对灵活， 
可针对特定湖泊/河段开展 

高精度调查 

覆盖范围相对有限，获取 
成本高，受飞行空域与天气 
条件限制；跨航次辐射一致性

和几何校正要求高，不利于 
构建长期连续序列 

[18] [21]  
[24] [29] 

无人机 

高光谱/多光谱 
无人机系统 
(UAV-HSI、 
UAV-MSI) 

城市河流与小型水库精细 
水质监测、小微水体与近岸 
藻华/富营养化空间分布 

反演、窄小航道或人工湿地 
水质精细调查 

超高空间分辨率(厘米级)， 
可分辨窄小河道与近岸带 
细节；飞行高度低、任务 

灵活，便于与地面实测同步；

适合构建卫星像元内“真值”

分布，为尺度转换与混合 
像元分解提供依据 

受续航和载荷限制，单次覆盖

范围小；受起降条件、禁飞 
空域和天气影响大；辐射 
定标与几何校正流程复杂 

[18]  
[21]-[23] 

地面 

光谱测量仪 
(如 ASD  

FieldSpec、 
RAMSES) 

及配套水质传感器 

太湖、巢湖等典型湖泊的 
实测光谱–水质同步采样， 
城市河流与水库实测站点； 
为卫星/无人机算法提供 

训练与验证数据 

可获得高精度水体反射率 
与水质参数，被广泛视为 
“真值”；可用于不同平台

(卫星、机载、无人机)之间的

辐射定标和算法交叉验证； 
有利于开展光学机理分析 

和半分析算法构建 

采样点数有限，空间代表性 
与时效性受限；布点和 

采样劳动强度大，难以覆盖 
大范围与高频率监测需求 

[29] [33]  
[35] 
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在反演方法方面，水体光谱反演技术经历了由经验模型向机器学习、再向深度学习和物理融合的梯

度演进，其本质在于水体中不同污染组分通过吸收、散射等光学过程影响遥感反射信号，并最终形成可

被反演模型捕捉的光谱响应特征(如图 2)。早期经验反演模型通常由波段比值、差值、一阶微分等构建，

用于描述光谱特征与水质参数的线性或准线性关系[25]。尽管这些方法结构简单、易于推广，但受水体类

型、浑浊度变化、底质干扰等因素影响较大，其泛化性能有限。随着高光谱数据维度的提升，机器学习

方法如随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGBoost)等开始应用于水色反演，可通过非线

性结构捕捉光谱特征间的复杂耦连关系，显著提高叶绿素 a、CDOM 和悬浮物浓度反演的稳定性[26]-[28]。
在 TN、TP 等弱光学活性参数的估算中，机器学习模型尤为重要，因为这些指标的光谱信号不明显，需

要依赖间接变量(如浊度、温度、光学活性参数)辅助建模[29]。 
 

 
Figure 2. Spectral inversion mechanism of water pollution and schematic illustration of some parameters 
图 2. 水体污染光谱反演机理与部分参数示意 

 

深度学习技术推动水体光谱反演从“特征设计”跨越到“特征自动提取”。卷积神经网络(CNN)能
够识别光谱曲线中的局部纹理模式，而基于时序的深度模型(ConvLSTM、TCN)适合描述湖泊与河流水质

的动态变化过程[30] [31]。近年来出现的 Transformer 模型通过全局注意力机制捕捉弱光谱特征，提高了

低浓度 CDOM 或复杂光学条件下的识别能力[32]。除纯数据驱动模型外，半分析水色模型(QAA)、辐射

传输模型与深度学习的耦合成为新趋势。 
随着多源观测平台的多样化，跨尺度数据融合在水体反演中愈加重要。星–机–地协同观测能够改

善尺度差异带来的不确定性，而多时相融合技术使得云覆盖条件下的水体监测连续性得到提升[34]。结合

水动力模型可将遥感观测数据与水体输移过程耦合，进一步提高 TN、TP 等弱光学参数的反演稳定性，

这在长江口与洞庭湖流域的研究中得到验证[35]。 
总体来看，水体污染光谱反演技术正从经验规则向深度学习与物理模型联合驱动的智能化阶段演化。

已有研究对不同反演方法在参数类型与精度表现方面的对比结果如表 2 所示。然而，不同水体类型的光

谱混合效应、水体垂向异质性、浅水区光底干扰、混浊河流光学复杂性等仍是限制反演精度的重要因素

[36]。随着新一代高空间分辨率高光谱卫星的发射、多模态数据融合方法的发展，以及物理–智能深度融
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合反演体系的成熟，未来水体光谱反演将在区域及国家尺度的富营养化监测、溯源分析、水华过程评估

等方面发挥更加核心作用[37]。 
 

Table 2. Typical methods for water color inversion, parameter types, and accuracy performance 
表 2. 典型水色反演研究方法、参数类型及精度表现 

研究案例 反演参数 方法体系 数据源 精度(R2/RMSE) 参考文献 

韩国 Sapgyo 与

Paldang 湖叶 
绿素 a 反演 

Chl-a 

卷积神经网络(CNN)，分别 
构建 Sentinel-2 单源与 

Sentinel-1 + 2 多源模型， 
利用 SHAP 进行波段重要性分析 

Sentinel-2 MSI 多光谱  
+ Sentinel-1 SAR 后向

散射 + 实测 Chl-a 

最优 CNN 模型 A 在测试 
集上 R2 = 0.7992， 

RMSE = 10.3282 mg/m3， 
RPD = 2.23， 

Bias = −0.44 mg/m3 

[33] 

太湖总磷(TP)反演 TP 

多模型对比的机器学习体系 
(XGBoost、GBDT、RF、 

LightGBM 等) + 不同 
ML 算法耦合建模 

Sentinel-2 MSI 反射 + 
TP 实测样本 

RF：R2 = 0.8025， 
RMSE = 0.0129 mg/L； 

LightGBM：R2 = 0.8365， 
RMSE = 0.0118 mg/L； 

测试集：R2 ≈ 0.53 

[21] 

黄土高原榆林河流 
域水库型河流水质 
反演(Ⅰ)：叶绿素 a 

Chl-a 

XGBoost 集成学习模型，输入 
Sentinel-2 各波段反射率及多种 
光学指数 + 气象、地形与 

人为活动指标 

Sentinel-2 MSI 影像  
+ 气象与土地利用 
等辅助数据 + 河流 

实测水质 

XGBoost 模型：R2 = 0.9476， 
RMSE = 1.7351 mg/L  

(同时 MAE = 1.43 mg/L) 
[19] [22] 

榆林河流域河流 
水质反演(Ⅱ)： 
化学需氧量 

COD XGBoost 集成学习模型 + 对比

RF、CatBoost、GBDT 模型 
Sentinel-2 MSI + 辅助 
数据+ 实测 COD 

XGBoost 模型：R2 = 0.9199， 
RMSE = 0.2335 mg/L [22] 

榆林河流域河流 
水质反演(Ⅲ)：总氮 TN XGBoost 集成学习 Sentinel-2 MSI + 辅助 

数据 + 实测 TN 
XGBoost 模型：R2 = 0.9154， 

RMSE = 0.2132 mg/L [22] 

榆林河流域河流 
水质反演(Ⅳ)：总磷 TP 

XGBoost 集成学习 + Sentinel-2
光学信息 + 流域环境变量 

Sentinel-2 MSI + 辅助 
数据 + 实测 TP 

XGBoost 模型：R2 = 0.9488， 
RMSE = 0.0267 mg/L  

(为四个水质参数中精度最高) 
[22] 

3. 大气污染光谱反演研究进展 

大气污染物的光谱反演依托于其在紫外至可见光范围的特征性吸收结构。典型气体污染物如二氧化

氮(NO2)、二氧化硫(SO2)、臭氧(O3)和甲醛(HCHO)具有明确的差分吸收光谱特征，使其能够通过差分吸

收光谱法(DOAS, Differential Optical Absorption Spectroscopy)进行柱浓度反演[38]-[40]。以 NO2 为例，

400~450 nm 波段的吸收峰为其柱浓度反演提供核心光谱信息；SO2 在 310~320 nm 的强吸收特征则使其

成为火山活动与燃煤排放监测的重点对象[41] [42]。臭氧在哈特利和赫特区吸收通道的观测可实现总臭氧

柱量的高精度反演[43]。 
在数据源方面，大气光谱反演依赖多尺度、多平台观测体系。卫星观测如 Sentinel-5P/TROPOMI 提

供全球高光谱数据，是 NO2、SO2 和 HCHO 长期监测的核心来源[44] [45]；地球同步轨道平台(如 GEMS、
TEMPO)可实现分钟级时间分辨率观测，为臭氧和光化学污染动态过程研究提供连续数据[46] [47]。机载

高光谱传感器凭借米级空间分辨率在城市排放源识别、工业区扩散监测及局地污染结构提取中表现突出

[48]。地基观测平台如 AERONET (反演气溶胶光学厚度，AOD)、MAX-DOAS 与 Pandora 观测系统可提

供垂向柱浓度信息，是卫星反演产品的重要校准基准[49] [50]。表 3 系统总结了各平台的光谱特性、时间

与空间分辨率及适用范围。 
在反演方法方面，传统 DOAS 光谱拟合仍是大气污染物柱浓度获取的核心方法，通常结合辐射传输

模型(如 VLIDORT 或 SCIATRAN)计算空气质量因子(Air Mass Factor, AMF)以得到准确柱浓度[51]。然
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而，DOAS 方法对大气层结构、云气溶胶干扰及地表反射率变化高度敏感，导致系统误差较大[52]。近年

来，机器学习方法被引入 PM2.5、NO2 等地表浓度反演中，通过构建 AOD 与气象变量的高维非线性关系

显著提高反演精度[53]-[55]。例如，利用随机森林(RF)或极端梯度提升(XGBoost)方法，可在城市尺度实

现高精度 PM2.5 空间分布估算[56]。 
 

Table 3. Spectral characteristics, temporal and spatial resolutions, and application scope of each platform for atmospheric pollution 
spectral inversion 
表 3. 大气污染光谱反演各平台的光谱特性、时间与空间分辨率及适用范围 

平台 
类型 代表平台 光谱范围 空间 

分辨率 
时间 
分辨率 主要适用范围 优势 局限性 

卫星 Sentinel-5P/ 
TROPOMI 

UV–VIS  
(270~500 nm) 3.5 × 7 km2 1 天 NO2、SO2、HCHO 

的全球/区域监测 
大范围覆盖， 
连续长期观测 

空间分辨率中等， 
受云层干扰明显 

卫星 GEMS/TEMPO UV–VIS  
(300~500 nm) 3~8 km2 分钟级 区域臭氧、NO2 

形成机制分析 
高时间分辨率，可观

测快速光化学过程 
受视角几何限制， 

校准复杂 

机载 高光谱机载传感器 UV–VIS  
(300~700 nm) 米级 飞行周期 城市排放源识别、 

工业区污染扩散监测 
空间精度高，可提取

细尺度污染结构 
覆盖面积有限，受 

天气和飞行条件制约 

地基 
AERONET/ 

MAX-DOAS/ 
Pandora 

UV–VIS  
(300~600 nm) 点位观测 小时级或 

分钟级 
垂直柱浓度反演、 

AMF 校准 
高精度基准， 

可校准卫星反演 
空间覆盖有限，需 

布设网络 

 

深度学习方法进一步推动大气光谱反演从特征设计向特征自动提取演进。卷积神经网络(CNN)能够

识别城市排放热点的高空间频率结构；U-Net 等编码–解码结构可用于污染物分布的高分辨率重建；

ConvLSTM 和 Transformer 模型则适合处理光化学污染事件的短期动态预测，尤其在弱吸收信号、云覆盖

或复杂混杂场景中性能优于传统 DOAS 模型[57]-[59]。物理–数据融合方法是近期发展趋势，通过在深

度神经网络中引入辐射传输模型约束(如 Physics-guided Neural Networks, PGNN)或利用神经网络逼近

AMF 计算过程，实现端到端物理一致性反演，显著提升跨区域泛化能力与实时性能[45] [60] [61]。同时，

结合化学输送模型(如 GEOS-Chem)与深度学习可进一步改善区域迁移性能及弱信号污染物的反演稳定性

[62]。 
多源观测与时空融合技术在大气光谱反演中发挥关键作用。星–地联合校准能够降低云层与地表反

射率带来的系统偏差，多卫星融合提升区域反演一致性；地球同步平台的分钟级数据则使光化学过程连

续监测成为可能[63]。此外，结合排放清单、边界层高度、交通流量等多模态信息，可进一步提高城市 PM2.5

与 O3 的预测精度[64]。 
总体来看，大气光谱反演技术已形成从传统 DOAS 光谱拟合到深度学习及物理–智能融合的演进路

径。然而，云污染、大气结构不确定性、弱吸收信号识别及辐射传输模型偏差仍制约精度提升。在未来，

高光谱地球同步卫星的发射及物理–智能深度耦合模型的成熟，将推动大气反演实现更高空间与时间分

辨率、更强迁移能力和实时监测的新阶段[65] [66]。 

4. 土壤污染光谱反演研究进展 

4.1. 土壤重金属光谱反演的研究对象与光谱基础 

随着工业化进程加速和农业活动的加剧，土壤中重金属(如铬 Cr、铜 Cu、锌 Zn、镉 Cd、铅 Pb 等)的
累积已成为全球关注的重要环境问题。相较于水体和大气污染，土壤污染具有隐蔽性强、迁移缓慢、累

积效应显著等特点，传统依赖点位采样和实验室分析的方法虽具较高精度，但在大尺度、连续监测方面
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存在明显局限。高光谱遥感通过获取土壤在可见光–红外–短波红外波段范围内的连续反射光谱信息，

为土壤污染的快速识别与定量反演提供了新的技术路径。通过测量土壤反射光谱并结合化学分析，可实

现对污染物种类与浓度的定量反演，从而为土壤污染监测、风险评估和修复提供有力支撑。在土壤污染

反演中，重点是利用土壤的光谱特征来识别并定量分析污染物的种类和浓度，尤其是重金属污染[67]，如

铬、铜、锌等元素的反演。在土壤污染反演领域，目前主要采用两大类方法：基于光谱特征的方法和基

于数据驱动的方法。 

4.2. 土壤重金属光谱反演方法、传感器平台与代表性研究 

基于光谱特征的方法主要通过分析土壤反射光谱中与重金属含量变化相关的特征波段，提取敏感波

长信息，并结合相对简单的统计回归模型(如偏最小二乘回归，PLSR)实现定量反演。肖洁芸等基于室内

高光谱土壤样本反射率数据，对重庆耕地土壤中 Cu、Zn、Cr、Ni 和 Pb 等重金属元素开展了 PLSR 与支

持向量机(SVM)建模研究[68]。该研究对原始光谱分别进行了一级差分、二级差分、倒数对数变换及连续

统去除等预处理，识别出与重金属浓度高度相关的敏感波段(如 445 nm、530 nm、1002 nm 和 1414 nm 等)，
并发现基于连续统去除光谱构建的 SVM 模型在多种重金属反演中表现出更高精度，其决定系数 R2 为

0.68~0.86。 
随着高光谱数据维度的增加及计算能力的提升，基于数据驱动的方法逐渐成为土壤重金属光谱反演

研究的主流方向。该类方法通常通过 SVM、随机森林(RF)和极端梯度提升(XGBoost)等算法，构建土壤光

谱信息与重金属含量之间的非线性映射关系。例如，在某铅锌矿区的高光谱研究中，通过结合不同光谱

预处理方法(如标准正态变量变换 SNV、多元散射校正 MSC 和对数反射变换)以及特征选择策略(如 Boruta
算法)，并配合 XGBoost 模型，实现了对 Cr、Cd、Pb 和 Zn 等重金属较为理想的反演性能。在矿区土壤

重金属反演研究中，也有学者引入遗传算法进行波段优化选择，并与 XGBoost 模型相结合，从而显著提

升了 Pb 和 Cu 的预测精度[69]。不同研究场景下典型土壤重金属光谱反演所采用的传感器类型、建模方

法及其精度表现对比如表 4 所示。 
近年来，深度学习方法在土壤光谱反演领域的应用也逐渐受到关注。部分研究尝试将深森林(Deep 

Forest)、神经网络等模型引入土壤重金属反演，通过自动学习高维光谱数据中的复杂特征关系，减少人工

特征选择过程对结果的影响。例如，华侨大学的一项研究基于高光谱反射率数据构建深森林模型，对土

壤中 Cr 和 Zn 的浓度进行反演，并取得了较好的反演效果[70]。这类方法在复杂非线性建模方面展现出

一定潜力，但其对样本规模和数据质量的依赖性仍需进一步评估。 
 
Table 4. Comparison of sensors, models, and accuracy in spectral inversion research of typical soil heavy metals 
表 4. 典型土壤重金属光谱反演研究的传感器、模型与精度对比 

研究场景 传感器/数据来源 目标重金属 关键波段或特征 反演模型 精度指标 

耕地土壤 室内高光谱 Cu、Zn、Cr、Ni、Pb 445、530、1002、1414 nm PLSR、SVM R2 = 0.68~0.86 

铅锌矿区 近地高光谱 Cr、Cd、Pb、Zn SNV + MSC + Boruta XGBoost R2 > 0.70 

矿区土壤 近地高光谱 Pb、Cu GA 波段优化 XGBoost 精度显著提升 

农用土壤 高光谱反射率 Cr、Zn 自动特征学习 Deep Forest 良好 
 

总体来看，现有土壤重金属光谱反演研究在特定区域和受控条件下已取得较为理想的拟合精度，表

明高光谱信息在揭示土壤污染特征方面具有显著潜力。然而，不同研究在传感器平台、特征波段选择、

模型结构及样本构建方式方面差异较大，反演结果对研究区域和实验条件高度敏感，显示当前成果仍以

“场景依赖型”研究为主，跨区域推广和稳定应用能力有待进一步提升。 
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4.3. 土壤背景复杂性对重金属光谱反演的独特挑战 

与水体和大气污染遥感相比，土壤重金属光谱反演面临更为复杂且根本性的背景干扰问题，其挑战

并非单纯来源于模型性能不足，而是植根于土壤作为多组分、强非均质介质的内在属性[71]。 

首先，土壤光谱响应由矿物组成、有机质含量、水分状态、粒径分布及表面粗糙度等多种因素共同

决定，而重金属元素在可见–近红外波段通常并不具备独立而明确的吸收特征。在多数情况下，重金属

通过吸附、络合或共沉淀等方式与黏土矿物、铁锰氧化物及有机质发生耦合，从而间接影响土壤反射光

谱形态。这种以背景组分主导的间接显谱机制，使得光谱变化难以唯一归因于重金属含量变化，显著增

加了反演问题的不适定性。 
其次，土壤污染过程具有显著的空间异质性和尺度依赖特征。即便在相邻区域内，母质条件、土地

利用方式及人类活动历史的差异，也可能导致土壤光谱特征发生明显变化，从而削弱模型在空间尺度上

的泛化能力。此外，遥感观测主要反映地表浅层信息，而重金属在土壤剖面中的垂向分布往往并不均匀，

这在一定程度上限制了遥感反演结果对实际污染风险的直接表征能力。 
再次，在自然环境条件下，土壤表面光谱特征易受到水分波动、植被残留覆盖以及地表粗糙度变化

的共同影响。这些因素对反射率的调制幅度在许多情形下甚至超过重金属浓度变化本身，导致在室内或

近地条件下建立的高精度反演模型，在星载或无人机遥感应用中往往出现精度明显下降的问题。 
基于上述特征，土壤重金属光谱反演的进一步发展不宜仅依赖模型复杂度的持续提升，而应更加注

重物理机理约束与多源信息协同。一方面，可通过引入土壤矿物组成、水分状态等物理参数，结合辐射

传输模型增强对背景变化的解释能力；另一方面，融合地面观测、无人机和卫星多尺度遥感数据，构建

具有区域代表性的样本体系，有望逐步提升土壤污染光谱反演在实际监测中的稳定性与可靠性[72]。 

5. 光谱反演关键挑战与潜在解决方向 

环境污染反演是遥感技术在生态环境监测中的重要应用，尤其在水体、大气与土壤污染监测中展现

了巨大的潜力。然而，污染反演仍面临多项挑战，且其解决方案需要多学科的交叉合作与技术创新。 

5.1. 光谱混合与污染机理表达不足 

环境污染通常来源多样且具有显著的时空异质性，污染物之间的相互作用会导致光谱响应呈现高度

非线性混合。例如，在水体污染监测中，Chl-a、悬浮物和溶解有机物等共同影响水体的光谱反射特性，

不同组分的光谱响应相互叠加、耦合，使得单一波段或单一污染物的反演变得复杂且困难。此外，污染

物浓度受季节变化、人类活动和水动力过程影响显著波动，在多污染物同时存在的情况下，光谱混合效

应尤为严重，进一步削弱了传统经验模型的普适性。 
针对光谱混合与机理表达不足的问题，未来可从机理建模与光谱解混两个层面突破：一是构建更加

精细的光谱辐射传输模型，将不同污染组分的吸收、散射特征显式分离，并通过与数据驱动方法的弱耦

合或嵌入式融合，提高对各组分光谱响应的分辨能力，减少相互干扰[73]；二是面向复杂水体开展多组分

光谱库建设和解混算法优化，结合实验室与原位观测，系统刻画典型污染物在不同浓度和共存条件下的

光谱行为，从而为多污染物协同反演奠定物理基础。 

5.2. 数据质量受限，导致反演精度波动 

在实际应用中，反演结果的精度还易受到大气干扰、传感器噪声和太阳几何条件变化等观测因素的

影响。以水体为例，高浑浊度环境会扭曲短波长波段的反射特性，甚至导致反射率饱和，增加反演的不

确定性。此外，遥感影像获取时间与实测水质监测时间往往存在时差，不同平台间的观测条件也不一致，
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这些都会对反演的实时性和精度造成影响。 
为应对数据质量波动带来的挑战，重点突破方向在于观测链预处理与不确定性控制。一方面，可采

用先进的辐射传输模型和机器学习辅助的大气校正、去噪与条带抑制算法，提高地表反射率反演的稳定

性和准确性；另一方面，通过构建标准化的预处理流程和质量控制指标，对不同平台数据的信噪比、云

阴影影响以及几何配准误差进行定量评估。进一步地，引入误差传播分析和不确定性量化框架，对反演

结果给出置信区间与不确定性评价，有助于在决策应用中合理利用遥感反演信息，提升结果的稳健性和

可信度。 

5.3. 模型泛化能力不足，难以应对多变场景 

当前许多污染物反演模型依赖于特定区域、特定污染水平或特定季节的训练样本，其在跨区域、跨

季节和极端污染事件中的预测能力往往有限。当污染物浓度超出训练样本范围，或水体光学性质发生显

著变化时，模型反演精度会明显下降，复杂水环境下的普适性和可移植性仍然不足。 
为提升模型的跨场景适应性，可聚焦通过算法层面的泛化与迁移来实现。首先，可发展物理约束的

机器学习模型，将水体光学模型等机理信息显式嵌入深度网络结构或损失函数中，在保持可解释性的同

时提升对异常场景的鲁棒性。其次，借助迁移学习和领域自适应技术，在少量目标区域样本的辅助下，

实现模型从“源区域”向“新区域”的高效迁移，缓解训练数据不足的问题。此外，构建端到端的多任

务学习框架，同时反演多个污染物及相关环境参数，有助于共享特征表示、提高模型对复杂污染组合的

整体刻画能力，从而在不同地区和时段保持较高的预测稳定性。 

5.4. 多源异构数据融合不足，影响时空连续性 

环境污染反演的时空连续性受到单一平台观测能力的制约。卫星影像虽然具备较大空间覆盖和长期

序列优势，但受云层、阴影和重访周期限制，难以提供高频次的连续观测；无人机具有高空间分辨率和

灵活机动性，但作业范围有限，难以独立支撑大尺度、长时间序列监测；地面监测数据精度较高，却在

空间和时间上分布不均，难以全面刻画污染物的演变过程。 
为解决多源异构数据协同融合与时空插补的关键挑战，可通过空间降尺度、时间序列同化以及数据

同化技术，将卫星、无人机和地面监测数据在统一的时空框架下进行融合，构建兼具大范围覆盖与局地

细节表达的污染物三维时空场；另外，基于时序深度学习模型(如时空卷积网络、注意力机制等)，挖掘多

平台长时间序列数据的演变规律，实现对数据空缺时段的智能插补与短期预测。与此同时，建设覆盖更

广的多尺度监测网络，合理布局地面传感器、无人机航线和卫星观测路径，可进一步提高对关键污染过

程的实时跟踪与综合评估能力。 
综上所述，环境污染反演技术主要面临光谱混合效应、观测数据质量波动、模型跨区域与跨时段泛

化能力不足以及多源异构数据融合不充分等挑战。未来研究有必要在精细机理建模与光谱解混、标准化

数据预处理与不确定性量化、物理约束与迁移自适应等新型模型框架，以及多平台数据的时空一体化融

合等方面协同推进。随着这些关键环节的持续突破，环境污染反演有望在时空连续性、跨场景适应性和

精度稳定性方面取得显著提升，从而为生态环境评估与污染治理决策提供更加可靠的技术支撑。 

6. 结论 

环境污染反演技术在污染物监测和评估中具有重要的应用价值，尤其在水体、大气和土壤污染监测

领域。近年来，随着高光谱遥感和数据融合技术的快速发展，污染反演的精度和时效性有了显著提升。

然而，仍面临光谱混合、数据质量波动、模型泛化能力差和多源数据融合不足等挑战。未来的研究将聚

焦于构建可解释且稳健的反演模型，增强对弱信号和复杂污染源的反演能力，发展跨尺度、多源和多模
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态数据融合技术，并进一步加强智能化与实时化的反演框架。随着新一代遥感平台、先进算法和计算基

础设施的不断发展，环境污染反演技术将为环境保护和污染治理提供更加精准和高效的技术支撑，助力

生态环境监测和决策的精准化，推动环境污染问题的科学治理和可持续发展。 
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