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Abstract

Spectral inversion techniques quantify pollutant concentrations, compositions, and ecology-related
indicators by analyzing the absorption, reflection, and scattering characteristics of contaminated
media to electromagnetic radiation. As a core methodology in modern environmental remote-sens-
ing systems, spectral inversion has advanced rapidly in recent years with the development of hy-
perspectral satellites (e.g., GF-5, PRISMA, EnMAP), airborne sensors, and ultra-high-resolution UAV-
mounted spectrometers. Research now encompasses a progression from traditional empirical and
spectral-index-based approaches to data-driven machine-learning and deep-learning models, and
further to emerging physics-data hybrid frameworks. This evolution reflects a broader shift from
“experience-based” to “mechanism- and intelligence-based” paradigms. However, environmental
pollution inversion remains constrained by strong spectral-mixing effects, pronounced heteroge-
neity in polluted media, substantial uncertainties in radiative-transfer modeling, scale inconsisten-
cies across multi-source data, and limited cross-scene model generalization. Based on existing lit-
erature and anticipated management needs, we argued that future developments should include
constructing physically grounded intelligent inversion models capable of robust prediction across
regions and seasons; developing multi-source, cross-scale fusion methods with high temporal and
spatial resolution to enable continuous monitoring of water, atmospheric, and soil pollution; and
leveraging edge computing and on-orbit satellite processing to advance environmental pollution
inversion toward real-time and intelligent applications.
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Figure 1. Comprehensive technical framework for environmental pollution spectral inversion
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Table 1. Advantages and limitations of different observation scale methods for water body spectral inversion
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Figure 2. Spectral inversion mechanism of water pollution and schematic illustration of some parameters
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Table 2. Typical methods for water color inversion, parameter types, and accuracy performance
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K, LG SITT RGN PMas. NOy SEHERIKE i h, @8 AOD 5 8RR M lF 4tk &
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Table 3. Spectral characteristics, temporal and spatial resolutions, and application scope of each platform for atmospheric pollution

spectral inversion

F 3. ARBRAEREREFANLESE. HES=ESRERREREE

e o L . DN Ny ,
M im0 N EmEi o3t i
g Sentinel-5P/ UV-VIS o oy NO2 SO». HCHO KIGHIE 5 A 7R A,
& TROPOMI  (270~500 nm) " m {1 4 ER /(X 35105 301 S A ZrETRY G
. UVAVIS o oo s gy DCHUSURL NO» RIS, T AL JLATARA,
PEGEMSTEMPO (300 s pmy 3-8Km*  PHEL S ot mibuiorfezle kel
e e UVVIS oo SIHRHORSUNL RS, TR ERERAR, %
LR FOGHUBRACRER 300 00 my A YTRM 1 b an sl U AR I
AERONET/ N N e . N .
UVAVIS 4o NS BEEKEERN. SRR, SAESAW. E
A 5 AT
JAE - MAXDOAS! 300600 nm) “FHM gy amir pae AR T R AL

RS 2] it — D HE BN KR 61 I I MR AE BE T A RRAIE B ZhFe gt . SR 48 I 265 (CNIN) g
YA T HE B R i S () AR 2548 . U-Net S8 9t — MRS 451 v] F 115 B 4 AT K i o P e EL
ConvLSTM H Transformer #5251 M| i& & 4b B OGAY 5775 e FAF AR A TN, JCHAES R E 5. =8 &
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AL ER J5 72 (A bR IE A AR B 4 SNV 22 S0 HIUR I I MSC A B S 48 46 ) A SRFAE 146 4% 5 1 (41 Boruta
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Table 4. Comparison of sensors, models, and accuracy in spectral inversion research of typical soil heavy metals
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