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Abstract

Lolium perenne L. is a commonly invasive plant species in the Poaceae family. Due to its strong
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environmental adaptability and competitive ability, it exerts certain adverse impacts on ecosys-
tems. To support effective prevention and control of this species, this study employed the Random
Forest model along with ArcGIS to predict the potential suitable habitat distribution patterns and
influencing factors for Lolium perenne L. under current conditions and under three future climate
scenarios (SSP126, SSP370, and SSP585) for the 2050s (2041~2060), 2070s (2061~2080), and 2090s
(2081~2100). The results indicate that human activities (hfp) and climatic factors, particularly tem-
perature-related variables, are key determinants affecting the distribution of Lolium perenne L. At
present, suitable habitats for Lolium perenne L. are mainly concentrated in eastern and central
China. Under all three future climate scenarios, the suitable habitats show a continuous expansion
trend, with a notable shift toward northeastern and southern regions as well as higher altitude ar-
eas. Moreover, the extent of moderately and highly suitable habitats gradually increases, the area
of expansion grows significantly, and non-suitable areas gradually transition into suitable habitats,
a pattern most pronounced under the SSP585 scenario. This study reveals the spatiotemporal
changes in potential suitable habitats for Lolium perenne L. under climate change, providing a sci-
entific basis for the management of invasive species and the conservation of ecological environ-
ments.

Keywords

Lolium perenne L., Climate Change, Random Forest Model, Changes in Suitable Habitats

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

1. 5|8

WA B (Lolium perenne L)/ —Fh Z L RAFHBEZLBIEY), Tz 0 T2k X 1], K
RAKD, BEFRMES. FAESSEERysmmig) 2 5 FRERCE . SIPE ROK HARFRE2]. T3k
[ VO AN & FE[3] ST FIZE B E TRE[4)) 2 e, BERAVEZ X KA, B
MR AR RA KW I . T B AR KNG N g RSE 4 it )], FTUHAS RGP ER
SRR AT B, AR AL BERSS MR S RGN EE R A R, Al RERAKR B
BB IR BT DA R GE VAN B A R R E RS AR VO L R R R SRR T IR, R AR R
O AN TR A FLR A R .

A BRARIE B KA oy AR DA B AR A S AR, 32 VR 22 0P R M R 93 A 5 38 AR A R R A B[ 6]
GREFEFRIN, SAEARBE AT R MR i A = A . SR X TR, RN S 80K &
A X ARG /N 71-[9]. b4k, MR FASB[10] (1] IATH 5K [12] [13155 AN R R e A W i 28 5 AR 530
B2, MMEEWEW R A S0 HIEERR. SRR S KIS I A Yo E VR R SR, AT
AR ELEAA M. NKIEED. M. s 2R K 7 T A Rl AT

W4 AT RS TR TR A Ao 3 A X 20 AT F E B TVE14] [15], Fe T W 20 A5 B8 B 52 mi 4 fh 23 A A 485
DR 34T A, I8 I MR R T R T P R 1)3& AR BR[16], TR 2 MRS E BB HAMME. Bt st
SRR 17] [18] AR WSEHIFI[19] [20] B € 7T BE 25 52 NAZ X IR 21] [22] BA S 22 il 4 6 R0 R
(19 70 A5 B (23] IAEIRI O AR B T 2 R0 51k, GFEEET RIER)T R MERAL(GLM). | SCH s
I(GAM) [24]; HETFHUN1E4% 5L (GARP) [25] 270 HIENFE Z& BB (MARS) [26] PR HLES 5 ) 5
W, W R (MaxEnt) [27] 2 ZE AR (CART) [28]. AN THIZE M 4(ANN) [29]. BEALAR PR

DOI: 10.12677/hjas.2026.162026 188 ol


https://doi.org/10.12677/hjas.2026.162026
http://creativecommons.org/licenses/by/4.0/

BFE

RI(RF) [30]5F . RF A 2 AN RFER R, BRSPS BT — NS B BE AL [ S {8, Jd et
AP 25 R AT R AR, AT 7 RE B H([31]. 5ERERT7EE — &S AAH L, RF
TEACFRSE A A HE R B W05 RF BOALEI R 2 SR, Be A BRI PO XU, 38 s e 7Y
WHZACRE ST fEREIEIAEE R, RF IR RENS b HE i 4 55 [32]; 1R iZe B A o B0 v () A 5 i
AU, B R BRI R e 7 33 kAN, RF BEARLAT AVEAG AR 0 L, iR s A R oy
AT IR SR BEPAB IH - B it B AR AR [34]

DAAE 5 o0 JE 22 A S g AR A s R B Tl 2 2 2T CMIPS {1 5t (RCP4.5. RCP8.5), filtn:
Garcia [35]FIF 70 R BUB T 22 P05 3070 X 380S0 38 B R B Meyer 25[36 ] & BRI 4R e 30 A% 28
BRI I S N, BERLHFR TR, AW, nIRsn/Ko K ERE . SRR X
Wi Streethran ZF[37]HIT0MI A, F/R 2 BERIAFRAKETRRIGMN, (HE KA K SR 6 )R
A, B R R R A P i X A R AR AR K B LI R T . 2RI, CMIP6 AEZE TR
PEH I A S R TR AR(SSPYE 5, AU 7 AR SR a5, TERE THSRFRE, 4
FRAKRA AT E R ZR A SISetE. ik, ABEFR A CMIP6 () SSP126. SSP370. SSP585 fii &, *f
FE AT RCP HIBTL, B TEHR /NS FE SONESL T BA 22 B00d A X TR (R 5[R0S i AR fee 1k
HANR D E PSR TR AR o
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Figure 1. Distribution map of sampling Sites for L. perenne in China
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AHIE G A A ) o S i S A ok B b [ R e SRR R HE o0 (RESDC,
https:/www.resdc.cn); 5827 B4 A1 B8 B H AR FP 2 B (S B (https:/www.gbif.org/) Fl o B %748
YIFs A TE (https://www.cvh.ac.cr/), THBRE RIS, HAH ArcGIS10.8 HZZm X/ Hf TRKE 1
km x 1 km 22X, 128 1 km BIZ2r X NAUIRBE — MM AG fle 0Bl s A3 5, W] LA f [R]
YIRS AL S B A LS . BRJGIEIREE T 140 N BEREREAR A SOLE D), K040 m SRR
“OIFhAFR. BRE AR HN Excel, FFLL “.CSV” #ARAE .

A FUSIER T 35 DB R (EAE 19 MEYW AR R, 3 MEARR, 12 MR, 1 PAK
AR E)WE AR AR AR & [38]. WS A &K H World Clim (https://worldclim.org/), L35 245 il kK K
RS B SEARRTRL 19 ANAEVUEAR R, SR HHFN 1 km x 1 km; ARRRAZ R A BCC-
CSM2-MR ] =AM FL B4 42 57 112 (SSP126. SSP370 A1 SSP585). =AM 5t (1IHl AU 28 AN 5. & T i T
M BENE ST g SSP126: S ARHER. KA MEAE1k; SSP370: sk, KRS (%2 {k; SSP585: #himHE
B R SRR . TEIX S SR /00T T 2041~2060. 2061~2080 LA J 2081~2100 =AM

Ak, 3B M World Clim SREX T =248 &, A arcgis $REX T WA 7], ZE 4 HRA 1 km x 1
km . 32ROk JE Tt 4 3 PR E (HWSD2.0) (https://www.fao.org/land-water/databases-and-soft-
ware/hwsd/en/), ZE[A]73HFZH 1 km x 1 km. ANF3EF)E T K B 2 45 £l 1 5 A 0 (SEDAC,
https://sedac.ciesin.columbia.edu), Z5[A]5r#%% A 1 km x 1 km.

AT ArcGIS10.8 ¥ A MR TR Y. HER, BN HRER AR 1 kmx
1 km, bR REBEE N WGS 1984 UTM_ Zone 47N, DUE 54055 .

2.2. PHAHBEESHERERFIE

PREE X)) R 25 1) R0 {8 Biomod2 #4608 R M4 (1Y RF A0 BRI 0K AN R 2 b AT IR0 o A2
LN T 140 DRI AL TR 35 MHERARE . N TIREEB I EINGE S, 7E R HEEHLARR T 1000
NNFEAE R SRJG, 1E8E T5%MIFEAR A S ENGASET, 25% A S ENIRES, I AR ERNES X,
DAFE ey 2 B PP AR O AE R Y . D T 9 IR IR 1) A RN 2 R M AR A SRR AR,
SPSS Xf 35 MIAEEAR EFEAT B AR AH AL 73 #r s HPIAN B DN IR B AR B I A HE AR G > 0.8 I, ik
HEM R E R, RENEREE 13 MBI EE D).

Table 1. System resulting data of standard experiment

= 1. BIARMRERANIMEEE

FLES w5 WA

bio2 Mean Diurnal Range (Mean of monthly (max temp — min temp))
bio3 Isothermality (BIO2/BIO7) (x100)
bio5 Max Temperature of Warmest Month
bio7 Temperature Annual Range (BIO5-BIO6)

AW
bio9 Mean Temperature of Driest Quarter
biol2 Annual Precipitation
biol5 Precipitation Seasonality (Coefficient of Variation)
biol7 Precipitation of Driest Quarter
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Bk
I ele Elevation
ph_water pH in water
T3 root_depth Rootable Soil Depth
drainage Reference Soil Drainage
YNE ST hfp Human Footprint

23, BEEEEXARENHEHE

FEOT I H 1) 13 DNIREEAR B PR o AT AN o AT, TR S 5 T B AE A X . 1
REATHxa i a5 AL, B O B =, B R/ MR R 22 RO R Ve AR E(HIS) . ¥ RF
BRI 25 RN ArcGIS10.8 H, (A0 TR AR E 2B TR, B Bk B o B SR IR 250 21
(Jenks), XTEERBAT I BEA X 3 AP JEEAE X (0~0.048) fKIEAE[X(0.048~0.138) HiEA: X
(0.138~0.272) =& X (0.272~1). BHJETHE TR RB TR 4 1 3G A X W48 sk a9

R 58 SRLA Y SR bR HEAT VEAL . BEUSERGAESETE (TSS) MISZ ik TARHFAE £k K A(ROC). AUC
FA VP AS RS2 () T 4 B s AUC BMETELO, 1]IYER PN - AUC {A #5230 1 S5 B BAG B8 4 (R TG 68 /7[39]
UbAh, TSS (TSS = BUEME + Femtt — D MEREWNGIHE, HTIPN[-1, 176 AR A
RIMERE. —RORU, Wik AUC>0.9 H TSS>0.85, NI\ AR IR UF[40]. A5 TSS {84 0.982,
ROC B9 0.999, A0 45 B AE .

3. 458
3.1. BEESHIEIEE TS

drainage
root_depth
ph_water
biol5
biob
elevation
bio3

bio2
biol7
bio7
biol2
bio9

hfp

N-

0.000  0.002  0.004 0.006 0.008 0.010  0.012
HEM
Bl )\ ES) = i N EiR

Figure 2. The importance of environmental factors in the RF model
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TR ZE R, o AR A LB A 8 N UEE T 4 MR 1 AN AKESIA
To HAosgmii KHs2 hip, SMTTER T 20.1%MEZ M, SEFET RIFEEME G 62.2% (WK 2), 7]
DA A S R 1 A R 22 B 00 AT 1) 2 S50 (K] 1 FE M B 2 B A AT K\ AN U 1o, IR AR OG A
T SR E N (63.7%)izE 5 T [ /K AR 5 R F-(36.3%), 1K J I HH B 58 B %ot Ui P8 4D S 7 BB INABURK o B A A
THAINEIES), LI T2 BB ) A e A s, BAREEEIMEN 10.8%, M40 B F L1 73 Al 5
M/, BV 6.8% (ML 2).

Response Curves of Key Environmental Variables
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Figure 3. Response curve of key environmental factors: (a)~(d) correspond to the response curves for Human Hootprint, Mean
Temperature of Driest Quarter, Annual Precipitation, and Temperature Annual Range, respectively

E 3. EEIMEEFIEMLZ: @~ ALES, RTEEFNEE. FHKE. SIREFRENRMELZ

N T TR T A RS B PRI R N, T 2 AR N R R S ATEE, 2 T
NKiEE(hfp) T Z L PR (bio9) FFF/KE (biol2). MREHFEF (bioT), PYASHE EVE i w3
B (I 3). ZWFFRIL, ANSIESNIREE 38 A IEANE R, @A TR, 4
) A T HAEK, EEREIT R R E . & TRESRA-7.5 B-5CEA LR, RIHBRE
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BT AR I FE A R, RHIR Y R TRIE N, AT ARSI AR R . AR KR T 500 mm I B iE
FREREAK, HERKERT 2500 mm ARSI REAL, AT 2 B REE G A, (EAEIRIE
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Figure 4. Distribution of suitable habitats for L. perenne in China under current climate change

4. HEISREUTPERZENEEX N

Table 2. Area of suitable habitats for L. perenne in China across different periods

2. PRINHATEELZERNEEXER

EAER s SSP126  SSP370 SSP585 SSP126 SSP370  SSP585 SSP126  SSP370  SSP585
(x10* km?) (2050) (2050) (2050) (2070) (2070) (2070) (2090) (2090) (2090)

JEEAEX 661.84 50330 463.31 449.59  489.68 41843 390.06  499.27 393.86 355.07

fRIEAERX  184.66 24560  278.49  289.01 260.83 282.03 31276 260.80  276.35 310.79
FIEERX 84.04 166.81 175.04 180.02 167.17  207.14  207.85 158.80  237.44  245.45
EiEAEX S 2320 38.09 36.96 35.18 36.11 46.20 43.16 34.92 46.15 42.54
BOEAEX 291.90  459.50  490.49  504.21 464.11 535.37 563.77  454.52 559.94  598.78
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PR R B AR AR IE AR b X DL R A 5 R P R A X (L] 4), & AR X TR 2.92 %
104km2 ANV IE AR X TRTAR 22 5 B, AROE AR IX TR EROK, O 184.66 x 10*km?, (5 B0 I& 2E X AL 63.26%,
ERE S B IAE A0, FEREADIHH; @A X IRy 84.04 x 10* km?, Lk 28.79%, FE 5
ARYEFRE A3 S VLR DX, dmil Ry YL WIpd EER B DU)I . Sy St 1 mnd Ak X A 23.20
x 10*km?, 5L 7.95%, EENHAAELAR, LA B, HEER. I, =M ZEHLE 2).

33. ARSKRBERTREFZZENEEX 2%

AW IE IS RE B0 A SRAN [F] AU S A T R 22 B0 IE A X ghAT 1 (0 1<) 5). 2050 4EAX, 7E SSP126
HRN, BERINEAX BTN 459.50 x 104km?, &80 1.57 f5, &4 XA KIEE N, $Ed X
AR R, MAET Y 84.04 x 104 km2 H 5K 3 1 166.81 x 10 km?, AL L8 (K& A XN AR
MHT) 1.33 7%, @& RO A HT 1.64 £ . 7T LUE K IARIEIE A4 XA & A4 X . 7E SSP370 15 5 T,
TEAE XSRS 490.49 x 10% km?, 24T 1.68 £, mid 4 XA Ul midE X 1) 1.59 £, dods
[X 2.08 fi5, fIGIEAX 1.51 f%. SSP585 st I, & A XS MAR 504.21 x 10* km?, s 4 Fiid A XA AR Y
1.73 £%, mn@E A X AR SR 1.52 #%, HudAIXx 2.14 £%, REAEKX 1.57 .

o SSP126 o ors SSP370  uvows
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Figure 5. Potential suitable habitat distribution of L. perenne in China under future climate scenarios: ((a)~(c)) Distribution
maps of suitable habitats under SSP126, SSP370, and SSP585 climate scenarios for the 2050s; ((d)~(f)) Distribution maps of
suitable habitats under SSP126, SSP370, and SSP585 climate scenarios for the 2070s; ((g)~(i)) Distribution maps of suitable
habitats under SSP126, SSP370, and SSP585 climate scenarios for the 2090s

& 5. KRERARESIEE RTEﬁqﬂIEIE%EE’Jﬁi X5%: ((a)~(c)) 2050 £4X SSP126. SSP370. SSP585 SiEIEE Ti&
H£XHHE; ((d)~(h) 2070 5F4L SSP126. SSP370. SSP385 SiRIEE TEEXSHE; ((2)~(1) 2090 514t SSP126.,
SSP370. SSP585 SRIER MEEX 7 E
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2070 FFAL, 7£ SSP126 5 &, MEFBRAIEAE X SAIARN 464.11 x 10*km?, & 4771 1.59 {5, #KIA
A XA IR 2, 2&4ETH 1.99 £, & REAEX A 9HTH 1.56 £, 1.41 fi%. {£ SSP370
TEECT, &R XETEAN 535.37 x 10*km?, & 4 FT010 1.83 %, & KiE A X AR 4 il 2 AT i 1.99 fi%.
2.46 {5, 1.53 f%. SSP585 55, HEEX MM 563.77 x 10* km?, & X R AT 1.86 %,
WX 247 %5, REAIX 1.69 fi.

2090 £EAR, SSP126 15 F, &4 X AN 454.52 x 10* km?, 224/ 1.56 %, &P KE4: X ik
R AT 1.51 f5. 1.89 5. 1.41 £, 5 2070 SRR L, &4 X S AN LG/, Hp, mpidEsd
X I ARER 2070 FARIA BT FEA, IE AR X T AR AR FEANE o 76 SSP370 5 T, 1&AE XA AN 559.94
x 10 km?, F&MATHI 1.92 £i5, @EA X SR 1.99 %, iEEX 2.83 5, (Ri&EEX 1.50 %, 52070
EARAME, SEAEXTIRLFEAZ, POEAEX ARG, £ SSP585 15t T, & A XA 598.78 x
10* km?, Z&4H71 2.05 5, TAUARIRA, P RIE A X T H 2 S HT ) 1.83 f5. 2.92 f5. 1.68 %,
rhE AR XTI AR K .

ZEEPTR, ARRBEFEAEXEAKEET R, dREAEX KERAOEAEX, dod A X AR &
Fe ko ARHEBUR 5 i AR X AR AR AL N, H 2090 R4 2070 AT ARG BT i/, 4i/NRA
HHENEE X BEHRUE SN E A XY TR E N, BRIk

34. REEREEEXRT U

FEASK 2050 4E4X. 2070 £EAR. 2090 448, SSP126. SSP370. SSP585 A ki 5t 1, v [E B 2 #i )i
FEIGE A X AR 2 Tk 5y, S HEsUG ¢ F & A X 5K #5500 B 2. (O & 6 R 3).2050 4EAX, 7£ SSP126
SEE RN, kX, REX . WX AR50 76.83 x 10*km?. 137.91 x 10*km?, 3.54 x 10*km?, [H#
AR SR, RS B R IKIX . R X, dE X TR, EIRAE X R ARR DN, AR AR
RWAEF N, IHALE 1.6%AN; ik EEE AL =4 WHEERICEE. Wb, B, (eI X,
CASITVG IR AR M) SR 0y, BE R BEY KX fae XEPERE A, 148
X EZAALESIM - T A WS AR PUVE 0, (Lph. PRV, HOR X IR BRI X AT

Table 3. Changes in the distribution patterns of suitable habitat for L. perenne in China under different climate scenarios

# 3. ARSEBER THPEEZENEEX S HREEK

TR(x 104 km?) AR (%)
A AR 5
kX FasE X HErs Pk X FaE X WA IX
SSP126 76.83 137.91 3.54 26.32 47.24 1.21
2050s SSP370 103.64 150.50 3.50 35.50 51.56 1.20
SSP585 114.15 153.81 4.50 39.11 52.69 1.54
SSP126 85.27 142.84 2.88 2921 48.93 0.99
2070s SSP370 136.71 164.87 3.22 46.83 56.48 1.10
SSP585 159.76 174.13 2.87 54.73 59.66 0.98
SSP126 80.14 138.50 4.20 27.46 4745 1.44
2090s SSP370 158.22 172.00 3.81 54.20 58.92 1.30
SSP585 190.38 186.34 1.66 65.22 63.84 0.57
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Figure 6. Changes in suitable habitats of L. perenne in China under future climate scenarios: ((a)~(c)) Changes in suitable
habitats under SSP126, SSP370, and SSP585 climate scenarios for the 2050s; ((d)~(f)) Changes in suitable habitats under
SSP126, SSP370, and SSP585 climate scenarios for the 2070s; ((g)~(i)) Changes in suitable habitats under SSP126, SSP370,
and SSP585 climate scenarios for the 2090s

E 6. RERAESEERTHPERZEMEEXZKE: ((2)~(c) 2050 FX SSP126. SSP370, SSP585 SIEERTIE
FEXTLE; ((d)~()2070 48 SSP126. SSP370. SSP585 SIEF = TEEXILE; ((2)~(1) 2090 L4 SSP126,
SSP370. SSP585 SIRIER MEEXTLE

2070 AEAR, FikIX . Few X TEARFRESE R, B HERUE S N A SSP370 MRS S NI 4E X
MAREK, 9 3.22x 104 km?, & ARHEBUE 5 IR X AR FEAAR [F], Wi X AR T 2050 FEARA A
i/, kX, FeE X IARSIE K. FeoE XA A e R E s F ok XRpt ey Jg, A=A WE
FARAGER . B UL IX . R A MBI ARG . WIRE . ARE. WIS R, AR A
WS I KON A s R IX A B S 2050 AEARAH ]

2090 AKX, FakIX | e X TEARDRE SR K, MR EHEBOE S P AR SSP126 16 5 Y4 X T 1
4.20 x 10*km?, & B =AM ORI, SSP370 Y4 X TR 3.81 x 10*km?, 55T HI /NN, SSP585
BN N U X ETARAY 1.66 x 10*km?, AR ZRAY 0.57, 2 Fr A I 1 A et 5t 1 A R /N
Pk HAE=E. NEEE. FEmRSAEE, KXy ke, BEiand kXA E AR,
SSP126 15t T Wit de X A7 B IJo Bl Wik As, S A 5ty AE b X AU 4 IX ARG K, 20 AR S hngE . SSP370

T NI XA T Sl AR LB PTG &, e b IR N AR S A . SSP58S A M AE st T W4 IX T
FAKMEIE A, TUFAN TR P 52 oty R AL 2 vk v ¥ WAL X
gr bnrnde e X S AR X IR sy, R IX A TE R AL, A B S 0] v 26 B s DX HE
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B, MY AKX A 2O G, BB, JakX ., RRE X AR R S R RO mi
TR, WA X AR S B 32 SR K

4. THe 548
4.1. FEHARMIREE B EE 51 TN R A P rgiE s

AR ST rf B BB B Al SR, G, L. SRS R, FIH RF Hl 1 E 5%
BOE AR X IO RS R AR L. BRI T AR A RR(TSS > 0.9, ROC>0.85), & BT (1) Tl ks
FEARH . RE BRALE SR 2 MR T 2038, BRSO &, Rete A AU = R e
AR, I HXFTEREA R EAGUR. A, RF B EEIP AL 5 A5 AR B A A s md, g
YRR AR X AR AL T B AR o BLAR RF AU AR 5 (0 B VP B A — e 3, e @Rz,
Tk s S B R 1 2 (8] (R 24 5% SRR SRALH . DRI, SRR mT DI ik 45 & HAh AR R A s A5 AL,
[l V73 A7 B DU SRS AR, 4 — 0 B v AR P AR e A TS 2

4.2. FREEMNREZEEE X SHAIRME

REWFLE, AR AR SRR IR AR . BARSRER, AJE3I(hp) MR
1 Xl T2 S JR 22 SR A P K BRI . AJGESH B T stk FRIE 20.1%, BRI ZR4L . AOLTT
B, ASTESENNTIEZFNR T REFEWEENE, THAEPARMALDEE, LFHERXER, AK
WY BRI TR B WM R 2R, NSRIESITR R 38 Jo A7 Nl A 1R I 31 Ve - 4
FRRaE, RUPELNOTIEN T HARK, HEREIT AR F G, KPR AR o B e
JETF PRI 2R 22 B HRORU

RIS A3 75T AR OGP 1 AN BRI e B KA ORI T, ARG A A PR ) R
BRI PETE A ARBIR . BRI, T3 BT i (bio9) M B 1 2 AE—7.5°C £ -5 CIX [ th Bilid A=
PESRIE AL SR, A7 A W S AR IR PR, X 0 3 A4 2 i IR T 1) 200 PR 2 5 1) B i 443 JEE 7 o 10 T B AR TR
[, AIRFEE (bio7) IR N, 0°C~40°CREAVERFEE T I, L 54'CRZ I, TRES mdi i
DB 219 P AT 0%, i ) PR AR AR I ZE AR I DX B — S IR AR A B SR A AR T T, 4R
KEE(biol12) KT 500 mm I BEIE & RAEFAEK, (HEE 2500 mm JCHSPaiAl, U] 2 5 REE MR
WIPREE, (ELE R B KL 2l [X P B & L W2 BRI DL, 31X -5 Sk b JR 22 F A Al 1 3R EE
T IR DR JRARAT, R 2 R AR IR, BRAC AT REAF I -

FIEH T BRI E BN 10.8%, H 3B UN BR S S R S AT B AT BRI .
IR T Rl (0 BB AR, AT RES B EC R BGR G N AEA 5%, (B OB X 9 5oE H UhES
Kk, BEKRE, BEFERDARUE. NTIR GRS FEER SR, ARRTIN b 75 4k 2 B4
2 N D[R 0N

43. RESBEZBUMNRZEMIE S HRIT M

MR R T A, BEE R, AFEARFEAMMIX ALK, WM ZE. TERRARS
g SN, BERMEEXYEIFRFLM AR, MR e Ry s, B ko b HE R
I 2 BT . SSPS8S 13t R A 2090 AEAR, 3E AR DXL AR AR 2 AT B 2.05 %, R B AR RS MRATHE
WAL B P 2 B ) B S 6 B AR XA . R E AR X RS K o R, R FEAAR
EH X R DA RIE B AR . WNENEE, PRKEESA TR, AZEE . HmE 5SS S0k
A RS A Xk, AR XA T ARG GE AR X . R A TP S g A R L
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rokady, ERGENERE, BRI TS AROR Y B S B IS A AR A ERERIAR, AR
JECE SRR, 2090 FAGE A X HAREL 2070 SFEARMS A ULAE, s BRI HHE A A it, ARy kiE
HATREAE —EFEE b2 B .

HECT- LIE RCP 15 5t R HIBEIT, ASHETTAE SSP585 155t T T Al A= X 4 sk ORI 2, wmndZE X
(8 N T AR S R R 3 o IR 22 S 11 32 R K AE T CMITP6 AL 58 AR IR BE K SR UK 5 g, HL SSP
WHREEHIE T SAPt R R, Hh SSP585 RN A IREHIREN R K et sURa & 1 s A\ S0
T, X EEAT hip K700 m TR AR, AT E T AL TE AR X YT IR . A2 T
RCP 1 5t EEEAR AT 0RIA, FIREMRAY TS QSRR EMANRINR G0, Ieok, AW R I
IR A I IE A BEAE AR R TARARRR S 5P Al B A F EE AR, DR 7 B A AALhX
RE 5+ B3 5K A 25 LA o

4.4. BEFHNRRBE 4T R AR

MRA M2 S AR R, MR R AT ME, e TASBE, ERERAMER
RIS, AT 2 A DL 2 e RS, H AT SR 22 gy Oy 3R E — N R PR, HaR Az e sx
AR RSN o 2B 22 B B A B sE 4 J AIIR S M, i A X 5K T e In Rl H A2 35 RGN AR XU,
JEHAEAA AT RS X, BEFERRATTREE AR R BRI Z AL,
EESRE S S LSRG, WAk, BT AR ALY BT RerE ok,  mTRE ARk A
&R

N, EBNCUR U ENGRE R S8 B, kR G AEX NS, R R
HERMEWEER, ErOQET WEH IR AR, WL g X ik, EESBES
S TR A A R A 5T, ek 2 Hwid, BRI ADNARIR RIS fa, Insmihl 4% 5EeE S|
T, RIF ARG E BT NRYIF AR SRR .
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