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Abstract

Long non-coding RNAs (IncRNAs) are transcripts exceeding 200 nucleotides in length and play piv-
otal roles in the pathogenesis of various diseases. Therefore, elucidating the associations between
IncRNAs and diseases is crucial for understanding underlying mechanisms and developing novel
strategies for disease prevention, diagnosis, and treatment. While traditional biological experiments
are valuable for predicting IncRNA-disease associations (LDA), they are often costly and time-con-
suming. Developing effective computational models for LDA prediction is therefore necessary. Cur-
rent computational methods frequently encounter limitations in effectively integrating multi-source
data and capturing complex higher-order relationship patterns in heterogeneous biological net-
works. This study proposes a novel computational framework named CAPTLDA, which integrates the
similarities and associations of IncRNAs, diseases, and miRNAs into a weighted heterogeneous net-
work adjacency matrix. A capsule network is introduced to enhance feature learning. Additionally, a
Transformer encoder is employed, combining a global multi-head agent attention mechanism with
parallel multi-head local attention mechanisms to comprehensively capture global dependencies
and local contextual information, ultimately achieving accurate LDA prediction. Comprehensive com-
putational experiments on two benchmark datasets demonstrate that our model outperforms exist-
ing advanced methods in performance. Case studies further validate its effectiveness in identifying
potential disease-related IncRNAs.
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1. 518

FRAE T B RN, RS B R TE B A P m AL B R . AR IX R B RS o N R EE A
H 112 1.5%, 3 I 98% H A 28 11 i 4w hth /37 #7140 [ 1] - K BE JE 4 S RNA (long non-coding RNA, INcRNA)
B e SO EEEE 200 MZEERIVAE TS RNA [2], DARTHA N FE SRS o 8T, AUEHE R IncRNA 7£
Z PP I R b R YR B S DI RE, EAEGE M AR IRRR R E L SRR R IA (I A R 4 A4 i A is
HE[3]e HEAE, INCRNA 55 &R iR & 0 Al Bk R BRAR OC[4]. IncRNA (1) 28 A BRRAE 2 33 5 2% Had
WAMELUE B, O MUEPRE[5] BRI IGBRIE [6]FIBE IRIK[7]. INCRNA 33k 57 5 2 Bl it (1) K
AERVR AL ZE VA O [8] . 1 B INcRNA 5 N ISP 2 [A] (1) Sk O B4 7~ 7 T 5 0 ALk [ FHAf 5 8 AV
JTHE A [10] S IT o AR . R — S KBRS RNA-E < BE(IncRNA-disease association, LDA)E\£2
I SIS IOAE , AL GRS R R . FER RN PR AE, AT PR I T LDA M AT R . X
éﬁ%ETLtﬂ%EﬁfﬁzE@ﬁﬁ%ﬁ@o FIFH A s 3ds, D8I R T 287 R fE ) LDA.

XEETFERT LR N =38 ST AR 2 R R . R A R T LR 5 ST I 5 i

%$$%H%E’J$ﬁ” ARG TSI IOUE LDAL SIi AH A AT IncRNA FHALLAE ) 5 ) I 285 >k
TRINTEZE ) LDA . IR 877538 5 > F AL I 2L F1AR 25 A% 1 5005 R A7 3K 4 J o) 286 &35 ) - T 5 76 1 SR TG o
Sun ZEA[L1[F&H T —F 48 RWRINeD [1777%, 1%77754E INcRNA T REFRBL: /X 4% 1 52 F A5 2 5 iR Bl AL
WA, Mk 1 XHERERE /D 1) IncRNA [T . Chen £ A[12]7F & T KATZLDA, ¥4 7 LDA. IncRNA
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Fak PR SCHAME AT = A AR RS A AR, DASE i Py 1 . KRWRH [13138@ 31 IncRNA )5
UG BN ZURE S MR IS A0 15 SR HEWT - IncRNA SCHK

BT AN I AR BT T LDA BI5E K28, IR BT R F VA 9N AE R A 42 SR S — MR RRE
B, ZHPEEES T IncCRNA FINE 1) Je e AR, M Ah 4> LDA 5EFE[14]. Lu 55 A[15]4H T SIMCLDA,
BIFE INCRNA 5 A ELAE B AZ AR B A0 D REAH A, , SR )5 B FH 5 B 40 A S BURFAE JEAT A g6
FEth 4. GCRFLDA [16] AT A1) LDA # it —ANEl,  FFRAE A SF AL AR = D ) dm i & - it 2
REZE SR TR DI o MFLDA [17]0] Ll ik £ s 43 Bic AS 7] A B SR e B A S B0, ik —2B 5N T —
FRIEARRFE DT, DAIR] I AR A AN B AN R

FT WA 277872 LDA TN 26 = K3K, ARGl & 5 I AR % 21 J71% . Zhu %5 \[18]
BT R T SBENLERAARZS &, TFR T IPCARF, 3 & —Fh4E R 22 AU B B 1) LDA T 71
CNNLDA [19]KFH T — i E AT 3 B JI ML XU AR A R 28 X 48 R 25 2] A Jey R QTR IER IR, SRR F X
BB RN G GRS AN T R 2 . GCNLDA [20]4E k. 1 I 5 7 19X 2458 125 AR ok 22 D) 285 SR i L PX) 4% 40 31 R Js 8
FHIE. gGATLDA [21]38 5 B INCRNA-FZT X HRHC- B 73 Be 2 T AR ABL I 1) 775 i 1 R FH R e 22 )
ZEHEAT T GTAN [22]F] FH 224 BV & 70 W 24 DA A AR RN 22 J2 B i 2 J2 0 Fh P 25 A6 A0S U PR A T Snifid

WA TTIEAETNIEAE LDA J7 MBS T S kR, (AR RSuH S E . —J71, B ARG RAH
RPN A BAE T R, — SRR (T 5 ] B S A 1 RN 38 SCER R AT 11 55 43 28 1 B
ST T, B RER B 2% PRI TR B By >R (0 1k RE AR THAR X A BR , X 3R B IX L6 U7 VAT BB IR A 784 FF A LDA
TR E AR5 . Geoffrey Hinton %5 A [2317F K I IR FEM 4 b it 1 A% G AR PR 22 I 2% (1) — LS PR, J8 ke
FHIEE BRI, APl IR 7 SR AL B AT ). RN IL TN T —FhBh A B L], wT
L)) 2 U s 3 1) (R BE LR, DT AE A 3 5 0% ) i N AR A 77 TR R Bt B s X PE e - Transformer 2244
[241E8 Z N T 8ANSR, FBokRZ ) H T LDA Fiijll[25]. B4R Transformer H (¢ v & J1HLH)
ARHAIR T 2R R, EWAATERA PP, B U SR A RS Ty R, HERMER
B %A T IERRE T 2 N IE, REe FEOCHYE BRI E K. Han 55 A\ [26]4& t () —Fp s i) 4 R & 0L
il A BRI, AT DAE T SRR AR IR e /) 2 [ SR AP . Luong S8 AN [27]82 T —Fh =3
RN, B TMABEE R E T4, MARENMANEDE. £ LDA 98, 7 IncRNA-JIH K
BRI AR MR A ERR B, X AT RE S S 804 R B IHL 2 1 = 3B A Do xR B & Il
I 5IN AT DU RO R AN [ R, 930/ D VA A5 S8 25 2 DA T 8 i A 2R 4 34 SR MG R A5 B IR

T B, FAMREE T N EEREAI4 N CAPTLDA, B4 7 IncRNA. miRNA KIZhBEM L
PRI A P00 BTG SR 0045 AR, MIE 7 — /NMINBUR AT IEFE BE, 98 5 4 A1 3250 PR N\ 21 Jis 2 W 2% rh
HATHRE R 2] SEEAL, 8 Ja W I B I 245 () B Hh 2% B — AN E A T 43R 2 S RERVE B IHLE S 2 3k R
HINUHIFEAT I Transformer Jifi &% HHdhA7 (5 B4 G DLoE e 2 B Ty th o ZE N EOR A R A 24507
Wrfadsxi CAPTLDA T2 AT VP4l ARECT HAh LA AL, CAPTLDA BAG 5 4 (1 Fitill 14
R, RBIWF I Wit — DR B T BT A ) T AN

2. M55 %E
2.1. BUREE

N T TR VPG T R AR G R, FRATEE AN 2T 2 A T B ROE 2E BT T VR A

R 1IHE Fu BIBFIT[L7]. &BdEEET 12 M H T IncRNA %55 S BRIl it 78 . B EL 4% 240 4
INcRNA. 412 Fli Al 495 > miRNA, L& M Lnc2Cancer [28]. LncRNADisease [29]F1 GeneRIF [30]+
WLEE ) 2697 AN SEIRISHIET INCRNA F KER . Ak, B HEK A starBasev2.0 [31](1) 1002 /> IncRNA-
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miRNA S5, LK K EH HMDD v2.0 [32]f 13,562 4> miRNA %k Bk .

HAR AR 2 RIFT Zhou 55 N IR FL[33] . %% 52 6045 665 1~ INCRNA. 316 P 1 295 41~ miRNA.
AT 3833 LI SCERH LDA, X EESEHCK H Lnc2Cancer v3.0 [34]F1 LncRNADisease v2.0 [35]F 5
A, 2108 4~ IncRNA-miRNA <13k H starBase v2.0, LK 8540 4~ miRNA-%7 K3k HMDD v3.0
[36]. SRR 250 B UE T MeSH? [37]F1 miRbase [38], 8 T — B4 W24 ffke .

2.2. 1RERHY

W 1w, A SO T — N4 B AR CAPTLDA - IncRNA-#Z35 % AT, 1 56381 IncRNA.
MIRNA. Fi =8 2 (A SRR S AU R tH A THRERE, SRR 7S AN TR BE Al &y — AN IR i 404
TR, 4 12 0 o O\ 30 50 T D) 8 rp R AT AR AR 2% 2T 5 o S R R T ) 4 1) B i N 3 TR B R T LRI
Transformer ZwiS 28 P HEAT 4 RME B G  H  28 Tim 5 1R

mmm A G

Weighted adjacency | A, | s, | A
matrix

Multi-head Multi-head
Agent Attention Local Attention

FTT T
162'c>§> @\—e ~
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Figure 1. Flowchart of CAPTLDA
[ 1. CAPTLDA HyZF2E

2.3. FRAIEX AN

IR s AR (Disease semantic similarity, DSS) IR HAE AN [R5 2 0] 4 3 36 AR Ok 10 25k, 78
LDA TR 133 772 N o RS S B RIE T Disease ontology, 1 FH A il LI K| (DAG) 45 K4 %
PIR 2 ] PR Z IR R AT RS [39] « % B8 Wang %5 A 32 Hi 777 [40], i@id Disease ontology H %77 Sc #H
B X TTlk R B DSS. BRI, X T4 R d,, 4 D, RS d A 5 LA DAG T A AR
MG . WG, 1ExGE D R EFEH T d, 5 SCOTER AT

1 d=d,

Sar(d)= S, (d’ 1
u(d) max (M] deD andd =d, @)
d’echildren of d 2

XoF FATRMT I ABBI R d,  d, A d, 22 8] 1 38 SCRH AL 2 SR
_ ZdeDlsz (Sdl (d ) + Sdz (d ))

Sim( 0 ) ==V (@)= v (4,) &
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Hol, SV (0,) = Xy o, Sen () FRIER D, WA BRGNS d, HORBUE LTTR. SV (d,) Rmtess WATA
SRR d, 1 BURE SR, PR 2 1A 35 SO M AL TR0 B ML & 2 I BB
R E R UL 35 I SR T FL AT, ML S) O, SR T S AR b

2.4. InNcRNA/miRNA ThEesa sl

G Wang 28 A$&H I T7VE[38], 18I B G 1 SR AU 5 SEBR 30 R ) LDA FIT miRNA-J I
(miRNA-disease association, MDA), IncRNA IjggAH LU (INcCRNA functional similarity, LFS)H1 miRNA T g
FHBLE(MIRNA functional similarity, MFS)iEAT & 2 1FA . X5 T-H> IncRNA B miRNA, 735174 1 #l
ro A n n, S HIFR S o R MRS R . S SR E U L, (i <n)) Fi,, (1< j<n,) .
WG, A Z A D RE A AUVE AR 40T
imax(Sim(tli,tzj))+imax(8im(t2j,tﬁ)) ©)

n1 +n2 o1 1<j<ny j:llsiénl

Sim(r,r,)=

2.5. NASREEFERE

ERE—NMLE A IncRNA. mA~ miRNA A1 d iz FIBER 4 . IX B sk 2 [8] 288 8] S B ok 28 AT
BRI A eR™ . Ay e R™MAI AL, € ROM HR, IXEEAE M A4 H (i, ) oM — A kI,
Hrh 1 FRMR S 2 AR CAISEE, B 0. K AR S, e R, S, e R“AIS,, e R™™ %t
Rl — 285244 2 18] O Th BE B0 SCMMLE: /- Bdk AT 9w tD, 5 A 28 L RO (E Dy B ARAUEE N 0,

S. Ap Auw
A= A-IL—D SD ADM

AIM ABM SM

(4)

2.6. [REML
IRHEM L& AN E A MG, AFBREERZ. VIRKEZ. HTREEM=2ERE . 40
— R Z A RN E SRR, S SAEEEA T, RS R R A e AR A
[F 2 A, AR
Uji =Wy; )
Horbr, Wy RORX R u, OB ARRE, U RO T
BN i R P A E R 2 B2 1 1 R T B N B R, TR R
s = 2. Gyl (6)

Forb, o, ARG RHL
TR, FE—AMETTE AR, o SRR — R R, TR

exp(b; )
C.=————"— 7
U] Zkexp(blk) ( )
X by R | AIRIE j RO B . IR, by AT, LA A
b; =by; +v,0;, (8)

Squash & FERI2% 5| N[ — DN EEQSET, & MH Rt BRI REREEKEN T
0% 1208, REARNMARTTH, TR
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2.7. REERSNH
2.7.1. RIEERFHH

ARELER ) BRI Ry — AUt & (Q, A K,V ), FEME SR I erh 5N T — A A AR
AR A ARHEA MG L LB AN Q FAREE, MK AV TREGEE. ME, REBNEESH
FEER LA AR A Q o B TAREEA R AHE v LT HR I /N T & W A SR, 52 R 1 softmax
WEJIMAL, REFE NIRRT HEENAE, FNRE 2R BN CEBERFEIL, ©lgghs G
softmax 3 =5 ) I SRR RS BE U A G B /0 HTHSR AR, Tl 5l NARE MW 22, AT LIE— B R A B
KA REMLE P RE, TR AKX LT

0=0(QA" +B,)o(AK" +B, )V + DWC(V) (10)

Hep B eR™ 1B, e RV RAUHWE, QK,\VeRV, BeR™, B, eRV, UK
A=Pooling (Q)e R™ .

2.7.2. REGERSINE

JRI R R I WLA L T N B R E X, AN R AN . ARINVRRIETTAS, — > 1x 1 /)
AT AR AR AW Q » T PN A K T AR TR A AR S A B (K O)FIEL(V ) o SR B B 4 e
LI

w, = " softmax gk )v (12)

AR T A R A W] IR ) i B BRI SR A A, S D 4% BE B8 1 1) A% ¢ R B AR I AR A5 L . I e
e &g il HAN R E A FEF 22 IR B0 . K, af RS RS2, IF N RHE s
FINTHERIRIEMELE 2).

{ c
Agent bias

Figure 2. Schematic diagram of the hybrid attention mechanism
2. RAEBRINHIREE
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Transformer
Transformer #afid 2%t N ANMHE R Z A%, BNEASHADTE: —23KE IR — N HTis
%o XTHANTR, HaMAREERE, REHTER . X DR
H (X )= layerNorm(X +subLayer (X)) (12)
Forfrsublayer (X ) o B 2 Sk R MU BRT SN 25 SEBL IO THEE, H (X)) R EAST 2 10%i o BT %
ALFEPA HH ReLU W0 R 40> o IR 4 R 2
FFN (X ) = max (0, XW, +b, )W, +b, (13)

Hrh, W, e Rdmcdelx(dﬁ*dmodel) s W, e R(dﬁ*dmodel)xdmodel , dy FIE B N 2.
TR J2 X5k SR 19 AR D R R e A i ) P e A, AR5 SR sigmoid 80 B KL, DASRAS TN ) LDA

B p:
p = sigmoid ( flatten (X eodes ) Wout +Bout ) (14)
. . 1
d(x)= 15
sigmoid (x) e (15)

Horr, w, e R M tnond g = R A AR LR B R R L SO
Loss = —Z[ylog( p)+(1-y)log(1- p)] (16)

Hhy RoRITShR%, FHEIEETH INCRNA-ZR A SCIR IR IF O BE N y 25F 1, &y 25F 0.
3. LR
3.1. XX EHESEMIEHR

XTI, R T8 XRAE RIS RE R (1t R o 6f TN B4, 4010 LDA #E0 J9 BH A
A, TR LDA WA A TEREAS . BT BHTEREA B R N AN T4 . TUANFEERTIIZR, E6%55E0
BENLE BRI EREA . HAK T4 '3’$j(/J\EI’J&Miﬁi%ﬁ’]lﬁ‘fﬁiﬂiﬁﬁﬂﬁ T, R THAAIA
FIFEAR RPA AR, 20502 AUC, 3 XN ROC #RZE FHITHRL, EEib T 3kH 5 2R 8845 BTl o XM
L EEAAMERE; AUPR, Z 3R bR SRS B 7 9] #R 28 R A T A, %%mﬁ%’é%&fi@f¥@1ﬁﬁ%ﬁﬁ’ﬂi R

oAk, BAER T A PR TR bR MERIZR (Accuracy),  [01#(Recall), ¥& % (Precision), %514 (Specificity),
DA SRS B A0 4 IR R R A28 FLAE . R EEPF 4R bR A X T

Accuracy = irp My (17)
Nep + My + Nep + Ny
nTP
Recall = (18)
Nip +Ney
- N
Precision = (19)
Np +Nep
Specificity = — ™ (20)
nT +nFP
Rl R 1)
P +R,
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Hor, npy RESETAFEANEL, npp R ESCIEREARRIXEL ne RAIEFEA RIS ELLL K ey —ABEEA R

3.2. BYUERF

XHJE/R T CAPTLDA [EEBESHAAERIEE — LB R, 052K %A 5(num_capsules). fiE
e 2 1B AR K /N (Kernel size) AQHRYE & 1 1R B09E 2 71103k %k agent_n_heads, local_n_heads). Trans-
former 4% &% (AR5 i 4E 2 (d_model) AT 48 250 (d_ff). HRFEANHN{4,8, 16, 24} Pk $%, BRI
M{3*3, 6*6, 9* O}k £, AILF R SRR R 0L BN{L, 2, 4, 8}HiktE, FRAELEEHN, {4,8, 16,
24}k d%, HIBMZS R o {05, 1, 1.5, 23k R, Wik 1 R, MRN8, BRI N
9%9, MRIIVEE JIkB N 8, JRHHBVERE JISRECN 4, Transformer it SS4FE4ERE HN 16, BT WA 2% B 5
TCHCN 1R, BORERESE — I AUC Al AUPR I Bl fE. LSk, CAPTLDA ZZHAGURN, T4
R SEE S, HHERM AUC Fl AUPR M ENEN, E T RER BT IPERS .

Table 1. The performance of the model when different hyperparameters are used on dataset 1 by CAPTLDA
7 1. CAPTLDA ZEHIRE 1 BB BN EHERTER R AL

SR SHE AUC AUPR
4 0.9762 0.9823
8 0.9898 0.9879

num_capsules
16 0.9798 0.9810
24 0.9725 0.9797
3*3 0.9716 0.9804
kernel_size 6*6 0.9743 0.9738
9*9 0.9898 0.9879
1 0.9798 0.9711
2 0.9834 0.9692

agent_n_heads
4 0.9884 0.9825
8 0.9898 0.9879
1 0.9771 0.9804
2 0.9789 0.9797

local_n_heads
4 0.9898 0.9879
8 0.9793 0.9805
4 0.9698 0.9685
8 0.9775 0.9764

d_model
16 0.9898 0.9879
24 0.9802 0.9777
0.5 0.9757 0.9844
1 0.9898 0.9879
d_ff

15 0.9811 0.9817
2 0.9766 0.9698
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3.3. 5HMERE

N T 5AE CAPTLDA MR REALERYE, FRATIESE 7 Fobp ek B fE A s 48 B Lk T X b, 4
lli&: SIMCLDA[15], &%J732:K H 32 5oy 40 Bk gl AR B, 0 H VA 94 B b 4 T30 78 ZE 1) IncRNA-
P Kk . LDAformer [33], —Figh & T #hHMEFAEFEHUE /2 A Transformer 4wt 2% FIH 7, VGAELDA [41]
e —MEE G T AR HEWT AN B B Zh S D98 i B A, BA A B AE, o il As g B B B g i g Al
e B3 gmidds . ACLNDA [42]1#& T — M =ER WK, il 7 Top-K EANMLMEL G ETTE, IF
KH T — AN RR I B Ee 2 I HESR, DU R A — k2038 bR SR kAR A . SSCLMD [43]:2 —Fh £
AR RIS, 2 AR ) Ja 1tk BT R4 0 B IR B 0) 2 21 RAR BT ZE 1K) LDA
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Figure 3. Comparison of ROC and PR curves between CAPTLDA and other baseline models on dataset 1
3. FEHUESE— L CAPTLDA SH &L E A ROC F1 PR phZkxftt
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°
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°
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Figure 4. Comparison of ROC and PR curves between CAPTLDA and other baseline models on dataset 2
4. EHHRE— E CAPTLDA 5H M ELZAREA) ROC #1 PR BRZEXTLE

W 3. K4 s, MET HAR T AR, CAPTLDA 7£ AUC Fl AUPR X353 T I iiE, #EEE 4%
—rf1, CAPTLDA [fJ AUC 1% 0.9898, Lt SIMCLDA. LDAformer. VGAELDA. ACLNDA. SSCLMD
SylE 18.37%-. 0.91%. 2.67%. 2.85%. 0.97%; AUPR {E°A 0.9879, Lt SIMCLDA. LDAformer.
VGAELDA. ACLNDA. SSCLMD %35l H 14.98%. 1.99%. 14.39%. 2.94%. 0.47%. fE¥E4E -+,
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Figure 5. (a) Comparison of the accuracy, recall rate, precision, specificity and F1 value of the model in dataset 1; (b) Com-
parison of the accuracy, recall rate, precision, specificity and F1 value of the model in dataset 2
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Figure 6. The comparison of ROC and PR curves between CAPTLDA and its three variants on dataset 1
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Figure 7. The comparison of ROC and PR curves between CAPTLDA and its three variants on dataset 2
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