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Abstract

Bone organoids, as miniature three-dimensional models that recapitulate bone development and
physiological functions in vitro, offer a promising platform for investigating bone regeneration mech-
anisms, drug screening, and personalized therapeutic strategies. This review comprehensively out-
lines the core strategies for constructing bone organoids, focusing on the optimization of cell sources,
the design of biomaterials, and the precise regulation of the microenvironment. We highlight the roles
of engineered technologies—such as hydrogels, bioparticles, and bioreactor systems—in enhancing
structural integrity and functional maturation. Furthermore, we summarize recent advances in the
application of bone organoids for disease modeling, drug screening, toxicity assessment, and person-
alized medicine, while addressing existing challenges including inadequate vascularization, lack of
standardization, and insufficient mechanical properties. Finally, we provide a forward-looking per-
spective on the standardization, functional integration, and clinical translation of bone organoids,
underscoring their pivotal potential in advancing bone regenerative medicine.
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1. 5|

WEGtih, EERAA U4 PR NSEE RTTREEBATIESIR NI, 110600 1 B 638 1 s 451 5 A
Tt SR E R H TR R &S, AT N 8 BB RE/I[1]. 2RI,
2 SR AR BCE R I I R A IR, BR AR R A R R A 2, A [ 7 A RS A )
BEAT B fe, RV LRI R LI M7 00 2 KA AU SSBR I 76 22, (H R e AR RS 32 245 AR R DL &
HARAE TR, AR X 45 105 A0 G BE A e S i 2] o

A B G 3 TREAE B BOR LA 20 gt () — Y 15 50 B8 R T vk v i A 400 1 2 ZFE 1k P9 ) s AR R
A&, BRI 7B A ORI A AL AR AR 78 CL R 29I RO iERE o TR, I R S s 8 V) f 24 R A4
IEHEZRIRES TR EALT G, WA T EHSA R EBR B, &I R s Bia sy F B KaE
BRAE I —TUF M AT R, LSRR R . JRA8 B iR B ) T 1907 SR UKt A B 4R i B
ARG, Mn 1987 4R (8] 78 5 T4 A I L2 1998 48 N JRJIRT- 40 73 25 O AR Bt 5C 8 S 4%, 2009 4 Hans
Clevers AP HI R4 B [BIAR S HHEA DA R, BURME. BF. B RS BRI . Ak
KA EHRMNKT AN PSSR B =GRS 7Y, BIL 15 P9 UL 5 21 1) S A ¥90 A A B A [4]
B E AR B USRI E R 5, RAIRR T TR L B R AR R AR R B N R A IR
AT BE LA ERAS . DRIRAIRTUE BAT YRR K AL IR ot 7 BAE AR .l B R, RHT
NG RT DA DU LS 3 B A0 A 40 R A BT R AT AR AL AR IRNE 5 4% 5 DL S AR A o RO AH LA
L XRRAEG T T B ASEBL . BAh, LGB T, B 2R as B RE NS B J S S W 25 )00 1 4 41
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MIPEFHRACR, KORTR i 25 0 AR PR AN R, A B g B R e 25 WD I, DAl PR AT KT
i .

2. BRFEHIERR

HRBERMEZ - DRE TR, HRIE SRR T = K04 R FEER: AR, S0
BHS A BT LR EOR 5577 R4t .

2.1. ‘ApAskiR

HURBEREELE G2 M FEERN, &Rt e scry, FHEME. REmnssEs
SHrE S AR Y, BE AR ST R, AR TR R DA R i )k BRSNS TE
FRF AR 2 REANI, AFAE T RRNERET, T CMEJy R AL 4i it 4T =), Pittenger 45(1999) 1 7Kk
IESEH R A R R AH S R, BT BE. B DU, DIRAE SRR [5]. &R T4k o
WNBATHRS SRR, RAECE 4R & AN T B iE SR e st el B4, HE SN
FEBEERIIAIR . RELEARIMNRE T BT T, & B3RP 202 | RURR, AR AP 8, T
AR AL B R [6]. B AT EAM, PEMEBET RN EEE, SRR
AVRFIEAE 1 5 R A S B 38 b R 3 AN e BRI VE AR [7] (36 1)

Table 1. Cell sources for bone organoid culture
%= 1 BLAFEEFHMMKIR
MK R EEhhE St

PR A ELRE AL 1 L e
(i%‘%i$‘%gm@“‘%ﬁ%ﬁi%\ﬁﬁﬁﬁﬁ%ﬁ(ﬂ%@?%M%%,%%E%
" TR R
BRI TN FRREFAE o SR, RS

H@\ %/J\%%ﬂiﬁ’f'témﬁ@ 1'45%@% rH}H@’ﬁ%%\ ’f’tlﬁjl}ﬁ'{j “**?éﬁﬂﬂ@ﬁﬁ'f ”
A L N Jz_ljxu \u—HA Nl=d a :“‘ ké
A . nmﬁ%ﬁ\%gww\nﬁﬁ ﬁgﬁﬁyg;ézg%%ﬁm
ey TR P

A, 93\,/4 L
B RR T8 - EVEAN I F) FRC, AT

G, A G S
KIS AR, BRI, IR BRI, SanE, s, 2 CORERER
T4 21 YR HelD . JUURESE). i A g ﬂm&%m 77
ey T ARER, WO R BN - R R ORI, X
H T2 Moo ATECE TR T K. R e o P K
WOGCRE PR TANI A LOSCR TR AN A rRACR SR (R, S, I
e R oA BB = 1 Ao ERREIHIR, MR )5

AR R AR R A ok AT MU, BRIBR HERGR. 484K D iR

R A

A4

2.2. XEMRESREERT

H ECM 2 —MNERKI=4E5 K, T8l | RRE(TE >95%) MBI E R4, &HAHM
THLRSY, SKEM> . 4HM4h 7 (extracellular matrix, ECM) & 4 2R LA K 40 i k75 A4k 15 Th g A ] 21>
(B, TEAS R B4 AN 2 b 7 2 A [l ) S5 M AN D e S . ECM JE I A BV ot (WU FE « #ahaita . FL
BRI AE 5 (IR 0B DR 7 58) 3L A A 2 28 I TR B8, 35 2 1R) 70 53 4 i) A 5] 4346 7 1)
[8]. DHit, TEARIMERRIT S KIRE ECM ML SCEEM R R A ThREAL B IS 88 B (1 25 A
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2.2.1. IKERRR

Matrigel >y Engelbreth-Holm Swarm /N 5 PRI 40 73 W R 28 ECM, Bl T HL 82 4t 1 AR BRI S8R
R, WS T4 b I E R B B BIE K9], AR1, R RoRIER R MmE R (B 5 2
RENPE K )5 T K2 B NS Sl i, SECLRS R EREBOR, R 7 IHAEFREL
W R R AL R R o BRI, — RS W m AR 0 R AR K B T & ke, i 3 R
hy FEEA. RIEERAREERRS[10] [11]. X EprphE sl f A e gnie, $24tm &K 3D
INEE, 02 S g0 R A0 IR BRI RE[12] . 35 H A B AU IR Y 5 SR AR (CPO) 5 N B UM
It 44 f 200 it & 25 5 (EC M) R B 8 37 2 119 i S A% A% TR (DINAA) TS B 17—l LI 265 45 g 45 A6 B S K e, it
(R 331 44 [R) 70 0 ST 40 L (BMISC) ) F A4 385 i RO 2 A [13] o BEAh, KRR IR 5y — AN 3 iR
PERTE S, ME AR ik A, T B N SR AL AT R A B [14] SR, KRS (1 B FH AT
TG PRAR . )5 m B A 2 ISR B E B R, HIL NS RS S8 (S % . ik
WE L BRI AR AR B Y B R R e A R . B, BARE SRR T —Fhahds DNAVBL
HH B R M 15 (Gel MAY) 7K it Jie (CGDE) R A& A 1 1) 286 580 B2 I sk i F A [15] . (H H TS = — Bhr i 2
ik SRR FE A B 2888 B A R A B R 2 AR T

2.2.2. ¥Rk

AR (U 358 B A SR « SR W) T B A S P A T SO B R T B 1 £ . T4l Bk
Bt il TR BRR ST R8I0 0038 0 T AR B S AE R R T AR A R e . 51N 53 ZE K7 (0 BMP-
2) S TEHLES F-(Un Ca2t PO [ ACkL v] 1 AT BRI TR BT, RESEREUE 50 7, (R k. e at Mt 7c
R, BT AER R FRIR T4 A T DA o 253 4 R P 1R 25 TR) S 4, RS SRS T FR I TR IR A8 B
T T R 2 1[16]. SR1T, BURLLE S S H A T-40H b O IR, AR 24y 2 T AR i otk o X2
PRI SR . Aok B, SRR SE. RIS, RN, 2 uee L
Wi SR S BRIN . B, R 0 ORI A S A AR R A, BRI s A Y,
ATRE I 40 M R R, SR SRR TSR

23 MBRREEFRSE

HRBE RKABTPRONERTE, KB H AU, AR & A LS R e B2
BRI R R AR R T OGRRIER, 5, TEAE TR AN 2 A TR b RS B R 4T B ER
FEX— LW, ANMANE R A4, SN MMR T S5 BA RN TN &S VI RS, E-S5REE N
I 7E A A A0 B R R 2R TR R TR AT I R AR R (R SRR B [17] . 597403, hMBSCs f5F—
SERBENETE, BEE BMSCs #3540k, 2955 7~10 K, 20 A S5 RS0 1) 40 AL B i, Rl R 6 I
SEIRF (W1 RUNX2, Osteix) i maRik, brdd e i ash[18]. /b8, 20 iz i i 248 s Ak
BRI 2 IR BN TEF WA~ ECM (W1 | BURR T, B Mr i A ELERE, 41 /2 i (ECM)IZ
DU EH1L[19]. Ffi%G BMSCs Byt —20 i, Bod ai s s Ebr S (B £5% OCN, H & OPN)*E
BT R, AMTFE S LA S A A BT AR [20] [21]. BB A GBEH, 4ERS S ThRE, BRI A
AR RIZHT A, AIAS /N IR RON ECM HR L R R B 1K) 2 4 ER 1, ECM & #i (h[22]. Mo FEEAH
HRBEAFRMIE I,

2.3.1. BiPEER

2B B IR R I B R AL LI, XM O A HE A TR REOR S . W TR T

4 HL(MSCs) BRI 1G98 Rt TV L 2 M7V, BFETORS IR I B 75 . B FR A e i 55 72 55 [23] . To kb
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i 2 T 335 77 1) FH 8 0 R R A BV 5% 5 2% NI 5 T o3 0K 400 i 5 5% 9 3 THD (D KK B B o 1) 78 03 T 40 B 7 855 5%
SRR TN EE K, SR S R RER MR AT, R RERIR[24] . Z 7R R, BR
A, 1EA KRB TR, ik R ER AR 0] B8 2 R A6 40 B 2P0 3% B2 AN [R) S BUCE S YRS — A E .
FiAk, A — L B R IR T VA TR e 0 A B R AR R 5 . B RS IR, W BRI ) RF SR B AT
AN T3S BIIRE, KEERAR I 30 By (b g i B, (2 i 4n i SR T ek k. k& W%, 5
TSLE KRR 7%, (BTG RS A i i P28, DAEE Fa BRIk vy X 41 PR o s 493 4 BCRE st A1 5 B0 i P B
RE . T 2 55 75 5 1R @ i ARG R BIRAS , Rk A R B AR A ) B4, ey ikak vl { i 2 41
JH B O HLRE FR[25] . SR IR BV B 77 TR NN BRGNP AT DL S B4l B 45 A (AR Ak, mT DL Sl g T
[26].

2.3.2. ¥R Fig&(Bioreactor)BhAstEsE

(1) fe¥s R MR (SBR)

THE 15 %A B e 2 0 S N 3 S5 4, (5 20 M 2 Y E R 8 e 7 ) A P R R B VR A [27] o Sl o g
SR PR AR BT U )y, RS A RS 7R e [28] . i LAb R 1 SBRs ekt = AL AR BT V) 11 BE B
B L 20 s BE , SREARHEE FRYR S AN e e, [RINEAT Bh T AN S0 R ER R . AT FE R
SBR REHE s 4 A 1 5 LU R AL JEE[29] . Lancaster 2541F B xS T KA A1 UK 24 28 B i 55 55 3 SBRs 4
TSRS R R TR, DDA L, BRE R A S A N AR R, IR
(K25 45 B [30]. Junichi Takahashi 8 NFENER AP0 N A% ARAL & E T, AR B ERAR PRE AR K I E R
B SCHRIR 70 00 KN i K8 B [31] o V0@ & KRR 77, PRTGEUE B 2 MBkik, HERIAN
HRVE RS A 5], AR TR AR A Ko (ER ST IR BY V) ) BUBK I 25 88 B R
1 SRR R B YT e S EEER B IR, B n ) oAb SRR IR 4T B R R B S R N 45 4

(2) HREAEY R (MFB)

MFB — i — Nl 2 AN T — R AN A 5 DL — AN AN A T R, e i i
PEMIOA S, AL AR ST I A S B BB BRI RAAAAES — LR EAR ., A 2 DL
B m AR SEPRR[32] o unt i3 B T LKA B BN AR IR, I SR A T G B IR A A AR
RERR, R KR 77 [33] . A B R IR MG A OB MR FE R XU, Ja A48 5] 77 m] LA
SR N B 20 B 5% 1 Tk LA B UMY IR 2%, hiPSCs 5 A N Bz 40 B 7E R 12 rh L 35 ), 7R
RGBT 77 RGBT R AT SR B K2 A R E I TR [34]. R4 dxt TR K& K/
BB R RER RE Ty, AR — (b AR B B L B AR 0 T2 8 B 2 5 2 i — S 25 SR DL
AR AN R BT X, 3D A RS 51 (i LA o) 2 i ) S T i 2 2 B o R R AR B BR
it FEd, BT T B ARG IR ORI ERR [35] [36], J5 B MEE T 51, W] S 34 Bk A 1) R A3z
TR 3D 1537 M-Sy — ALK B8 By IR A2 77 . Zhao 25601 7 —FhiMm 4 B R SFms ) B B )
oI T4 fE(BMSCs) LB FAE[37] . A 78R F R A 15 1 AR BMSCs Al KR JL [R] L 52 3 B
BB G AR ALY GelMA TR b o 45 TR I, dAR ST TEAS A 4 A 5 A A (R 2 18 B 1T
B HAFAFISEE U R FR R SE TiX — . HEE GG A REB W& IE AR A AR feE 2t
BRI BB R G I T 3 TR B A AR I B AR ) S B, FEIERA T R AR IROSE2E T DAE K S B 9%
I FE R AR RS B (R R T R, BRI B AT [38]. AR, MEUTVET IS 2 Bk, Wt i 1
T A 22 HL 36 52 2% 1 3 SR 4E RS 0 10 e RR IR AR IR Sl s ), b bl A P e v 22 LA ) T
bt FLe R RANAEDE T, MFBs Fl TR AR B I B IR G —, (BEERE72T EARmN L, Fit
HIVE AR, FF H i T 4510 52 22 VERIAD R IR IR 1 5 0K 185 7% K1 PR [39] [40]
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2.3.3. 3D X ELE MM R AL T

IS 2 S T 1 2 FL =4S 28 (3 T PLGA. PCL. TCP U &R RH 52 242) A4 a4 it 4 72
THERIS G FAZ O R AT T RS R FE AT AR AR H RO 544, SRR A 1 % S R A FLBR R . fL
B, (RBAIMER . EFREIEMMERN, 51 S0 F M0 h[41] [42]. SR, 4R RS T SC 28 p%
A R A UK R A LA SE S UL, SRR G ek, 18 PR PR A L0 4 SR A
BRAb, el 753 Fh e A 2R R R S IA R T A, R B RH R .

ANEFF AR S A AR A KRR, & AT AR F 78 H bR 5L 2). 3T 3ERA
VI B IR, PR R 5 5 BK B e 5 77 o 18 3K i 5 259 i e AD 4 — 25k, W mT R MFB
SRAERBME S SBR, BT ik BT IR, (AR SRR A . ATl I R 8 =K BCE i, 3D
FTE 0 A 03 1 S SR S mT (RKE  TE LAATE: o [RIRE, AR e — A B T B, A5 HAth
KRB, A B AR e 52 A T IR 508 11 1)

Table 2. Comparison of organoid construction technologies

=2 EFEMEEAILL

HAAR  BDBAR AR gy [y
3D S FARFPRE: IRREA . %

FeJRS Ok S AR O ‘
: MHZIER B IR A R AR R g e 5
PR jepmmcy pLoA, peL. Top a1 TIIRABERI gy " pirre

Bl BREBEKATIAEA

AE R o LERIA, UM R
%ﬁﬁ%:M%mmwmmaﬁihﬁgggﬁwmwfE“”ﬁﬁiggﬁ%%; i LU
L1 R F

R R , e E R TSR B A R
ek R A% HUBN 47, L KR (0 Matrigel). 3D 3T

Yot SEORANN - 4UARIE AR S BOMLROR B

OO marsion e e s
B S WO T SRR T .
RIS BIAOREL A e st PREIER
(MFB) I3 3kh il g K

ﬁ%%ﬁ%i&%ﬁ%&f%ﬂég;%ggi%ﬁ%m%ﬁﬁ%;%iﬁ IR SR B
TKBRER @&Eﬁmi%&fgﬂéﬁﬁﬁ%g%é&fﬁﬁ%&%%%ﬁﬁu&m RAFHEAL: T35 S5)

b P B S A SR
\ el SRR 8 19 15 ‘
S AT T N e e
MO ST Tt sy s PR SRURE TR ALIAN BOM, IR P g
- P R SR B e

73R

3. BABTHROTSTLR

—RORYE, AP E R B PRI I, SRR A B AV A B o AN AT i TR B
YN R AEAF RO SRR B = RST8], A JR 0P LA R J A7 THT S o A T BRI VR o X T i Sh i 288
BRI, A FEM R AW TR R AR R E A R B SAE IR R B . TR B
AERER A HRRIWE U . B RS H M e S A TR A AR R 22 M B R, 2017 48,
Alexandra lordachescu 45 & I H1 7 S48 B AORE S o Al A T8 1K B 1 20 045 N 212 R RR AT (X 21 4k R B
o RSEEL T BCE AR E AR, TR T SRELT R E B AR A A RS . A, BT
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SINT OBs KAV WA & T L RE[43], TR 1 — A 0B i A . X — R B 447
TREAN AR AR CRrIBE R TRANE G Bh)E, 5 Ras s U PGE R R, AR SCHE RN SO TR
SRNEHLATRE . ik AR UIRSEE T, DHRALYIN, KA R RO PR R AR & SRt 12
ST BT B B AR BT, T IR A 85 5 A S A [R5 T A 41 2R3 B A A AT DR 22
o

31 WARKRE

ATROIRZS R, B 3T W i R R S AEL4H R (Osteoprogenitor Cells) BL 432704k N i 40, To i 20
BB BRIA] & B B VU, B R, B TR W R I Al R A S . FAIRIE] Dy
Pribrum i@t — e fa e . GRS E AN 0 T HEBV A A, & TG TR BB TR BRI ZH 2R, T
FEEERUK, BEE R EVE 1 AR ETH L BUZE « fE— T, B B B8 78 i T 40P A 2 3D £ %
HESCEE b, @ B MR B AR IR TR, R T IR B R SV T ) T B DR
BATI[44]0 SRTH, IXRLLRIT BRI SRR BAFREL L E, S B RE e EBEERmSS . BR
FEVE JE T RAE AL AT, (X IRATTER AN B SRR 288 iRt 7 s . M gm s B e
WA ST AT A 75 B8 A A T, 7 1 3 ) 75 S22 A 08 40 el 402 A A AN i ) 5 9 2% A1

32. BmkHBEE

Hhi(Callus) & H Il ad i, BHRBE AR 4. PE st s AqLE 5,
HIC A A MSCs £ Sk 15 [X 35 1 B I AT B ERE - A% o 12 RE™ M MO 37 =) B
BEi T, PR AT R A0 M BB A A, BRI A R LA R AR N, RN AR K 5L
TT, RCE AT A PR G A o S0 200 (= AU T S 5 240 ML T ) 4 5 e 0 22 J 3 1 6
M, B B R S B, T B £ (Woven Bone), 55 B A PRI, R AT 0 M i 11
B0 B8y . Chang SEFTEAEL, 5 UMEHAL TN TN 2~3 DML, 80 & 5 76 B sh it ] 8 1) G5
A 4 FSEIL T PR A A [45] . Aonan Li SEAT ST AL, FI ) DPSCs (1L ZE e /15 BMSCs 3t
B IR D RIS 7 IR A TS SR ISR AR B, XM I K A SRR AR B G TSRO E SRR
3 0 R S TR, RN TR AT [46]. F SRS AR B R L BT AN A AR, 2 S B Y R4
BEMER.

33. INRBLBE

/NGE (Trabecular Bone) & 8% R4 1 B ARG 7y, B TR R MEMA K mi W, =&—
Flt 3D W% 454, T CAGERE MA5 R B Fase AT, AR B gl , A4EREE 81T AE . Yongkuk Park
LA JBATS B 5 B 4%(DBP) 51 5 B 41 M URR S5 PRl AL A S 5 A 2 51 S AR B AR R, R
7 E/NRRIEE[47]. Hongling Qin S8 RN E /N EELEH, FIH DLP WIkE#ifliE 2 58% LR BAH
&AL I RERRES (Ca) A= W W B SE I 138 mf N AR, AT I ek P AR FIAE 52 [48]

34. BRERAHRE

NI HE(bone marrow, BM)J&A77E T H- B il s FIAA o1 [ BRI 4R 21 21, B i i Th e 5 5p
BREThAE, S50, RSN YR T4T. BMOs HIEA 4k iR, EATEALRREE
RIRE R L RER 3D K &K . Stephanie Frenz-Wiessner 257 I A\ 75 5 £ AT 40 i (iPSCs) 4 & 1 B 14
PARE I I 265« 22 B 1) 70 o 440 L/ AELZE L P 40 6 2 A DA B KT 98 SR SRINBIED 52 7 (1) B i 25 4% ' (BMIOss)
I H LI, VPSAS ik = E (— 2 DL B o b 009 ) AR BRI, 05 B BB 2T 4R AL AN P b 4 M g T
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g PRI i g TR LV B 9T FR LA 7R [49] . Aude-Anais Olijnik Z548 F— 2 21 41 g Bl T-VE & W0 A /K ki . 4
X hiPSC #EAT ML AE =48, £ ZEHEREE, HL 18 R4k, hiPSC /=4 v Juig A il e
FRRRSCEERE R, STRELE T I = 4RO 53 Fh R S0 { B AN 25 6L A3 it [50]

35 BERHKE

BOE IS A a0 23, PR MRS & 1 RS . B SR I 40 i A B B (ECM) R4 R
T k= M FME, HAREER AR, BE G 8RB E R L 5%. KI5 5H (5 R
)RS H 2 AL 5 R (B /K& 65%~8000) 7 BROS T #AT,  HRARCERH (R KR I B T X B K X4
WX B F A, SR A A=K o 30 H 21 i Ae T 32 1 B 7] 78 )i 141 B (BMSCs) 173L#% . Guanrong Li
SN B A BRI BUE 632 B R (HA) /K 88118 5 30 1 70 (KGN) 19 58 (FLIR - R 2k LR 3L 2R ) Tk 46
FIAE — S A 32 T 40 I PR v 8 B A R X R R N T BMISCs 7K i S 3 A i3 T SR R AR e SE Y i R
A4:[51]. Yanchao Zhang %54 i BMSCs3D 4ifig[4], JFAEE bRk it 9%, @ EREE. b
i, B IL-18 BRI RVERCE BB E, YT RERCE R B R T S e Z A R R &
[52].

4. MRS
4.1. EIRER

RS E B SRS RS B S O BT R RE ST, R TR0 2 i 5 B R A et
R, IR AT BN 2% b i s R B RY, DUOBEHDLBOR B AR BLR AN . 412U AL RERRES, Bl
TRRE R I R SR A AT RE Ao FURT, E sk 32 B8 N TRIOA S & B R M 22 [53]. ik
W, AN R RIS 2 R T AR EIL 7 RE A SRENRIL, N E AERIRHEE 1A R
RI[54] . AZFAIER R D R B A 4 R B R R TR AT B S AN SR L, AR R R (I
) BIBLEI I FESE (0T TR . Laura Donges 578 H i T2 B R Fh A N 2O 5 3 UG IS 1 6 RARCE
KEFH, IZBRIME 7 2 OA JREIRFAE, HIanHCE iR B e min™ e 8 5m i 7 A QAL
PRAEALSE, JETE IR LR 7T T B AR TR DL HI[55] . Haixia Ma &5 B &2 Sk Vs e 40 i G g 1 7E 444t
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