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Abstract

Pulmonary fibrosis represents a core pathological outcome of aberrant repair following tissue injury,
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leading to progressive functional failure of the lungs. Recent research has elucidated the critical role
of glycolytic metabolic reprogramming in this process. Targeted intervention of the glycolytic path-
way can effectively modulate key pathological events associated with it, including the inflammatory
response, epithelial-mesenchymal transition, macrophage polarization, and extracellular matrix dep-
osition, thereby attenuating the progression of pulmonary fibrosis. Compounds developed based on
this strategy have demonstrated significant therapeutic potential in preclinical models, highlighting
the promising prospects of metabolism-focused interventions as novel therapies for pulmonary fi-
brosis.
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1. 5l8

Jiti 27 4 Ak, (Pulmonary Fibrosis, PF) & —F B 22 P 8 51 & 02 1t Je ek i, G os B A 0o R BILAE T M
BB 2R B SR 45 A R 5 4l Pt A 5 5 (Extracellular Matrix, ECM) 35 A ECM FEHK R EA .
ERIFEEA . HIEEE . BO RN IR RERESRME[1]. 2 ECM & i MR, E51Kk
ECM (13t BETRR, ki 5 UM AL 2R A RRR 5 AR A e D e RS, e 2tk e PR 333 [2] [3]. PRI,
ECM ) 55 UURR S B A A s Bl 4 440 I B B bR 5 2 — o iR A 2 22 ) o M St o 1R 28 KB B
FOm B R R BINUR AT 4R AN AE . e b AnAe . EREANMD . Py B A S A SR AN B ) AR LR R
T EH T 4 2 A 5 50 240 o 2 A D UL RS 2T 4 40 i U2 B 3l ECML 3 3 ORI A% o AT 3 [4]-[6]

R VIl £ 44X, (1diopathic Pulmonary Fibrosis, IPF)& —FHiE A R 18 2k e v e, $5oK. b3k
SRR T R s, IPF A0 Z AT 9 270 53] 79 0.09~1.30/1 31 0.33~4.51/1 /5, Wi Az E
I 3~5 48, A BA N YR B sy 7 L[ 7] [8]. H AT HEAEH] T Bl - 4E (L 25 A it AR e
A ek Jedn, AEMHEREY, & IFEE B mE RN TSN R KRB, #2 7 HKIT s %
4PE[9] [10], 4 BFWRBNGEH . H IPF WAt RECEFEE 8 FHAE ISR [7], X AMFEK 1
BEMENERE, ESMMFEMASM A B eT WL, JFRBE S 5897 SRS 2 IPF BFAR
AU AZ O B o

2. REHERIE: DA

R T A A2 ) FH 22 P A (] P Bl 42 7 260 0 2 o TR R IR R WL SR I ATP (1 — RANE AR, X — R
TR A UL 2 B SR TR AT LUK A2 o WEIRERARR T Re/™2E ATP IHUAR SR (LA o 35 30 T 75 1) R &
Gb, BEFTEAE R AR IR BE S S B AL AR & O 4, TR AN I IE AR BRI U B Hh oy v EE )
P[] G, A AT B AU AR opo= AR 6 4 B -6- B R 14E N T IR T B i 442 (PPP) 1) 484K, 73 3 (0XPPP),
A2 B -5- R A NADPH o 12 0E-5-B5 R AE N B ZE 1) FBcHE, v DNA R RNA 1P R AL R Rk ;
NADPH AU 5 IRIEE AR EIEE . 2 B A0 DY S0 R 55 2 Fl AR i, 34 Rt [ ez ik H R (GSH) BA
PRAF AR 4T B0 72 v 76 PR U (ROS) 7 o4k Sk [R1422 191 977 %1 400 B 23 A P R Bk AE T2 12] [13]

WAk, Bl AR E g AR (R T AL, BT SRIE IR T TR I “Warburg 20087 [1414F, 1E

DOI: 10.12677/hjbm.2026.161006 50 VR


https://doi.org/10.12677/hjbm.2026.161006
http://creativecommons.org/licenses/by/4.0/

BB 4

SRR [15] B ST R [16] BAT /R %% I BRE [1 7] 597 I R ML F 90 Hh 0 R B 1 M R 1) & 5
AWRFCEAVRIN,  TEIE I LT 24 200 B Hh W T Ak £ 7= 4 LI R = FR T A0 2 v ) Ak 5 B R P AR SR A B
5 WE AR 10 2% 1Y) S BEG UM G -2 (HK2) TN AR B (PKM) B35 5 SR B (PR ) A 6- 18 1R SR - 2- 13 g
15 HE-2,6- R 3 (PFKFB3)RKIAH) Fif, HiX—M& S5HE 75T B 1-1a (HIF-10) XS H IAH S, 48
TR T FRET SR PR 2T A0 2 AL I AR S R R AR 1) R S B R [ 18]

3. BERESHLAT4EN

PFKFB3 {f: 24 PFKFB [A] T 5 i (PFKFBL-4) i 11 e s R R o, BT v A B R PR LL 26 . B
R o8 e T S T AR ) e 1 R R T IR T SRME-2,6- R (F-2,6-P2) M i K P AE A, ki F-
2,6-P2 X} 6-Toff R SR - 1- S (PFIK-1) AR AR A R0Ts Joxof SR -1,6- W IR G (0 30k 4 Y, E 0 8 42 o P A PRl
YR, RN A I R b R e B /E FH[19] [20]. PIBK-Akt-mTOR 15 538 i 52 IE 22 ¥ (LPS) L i 27 4k
YAt PFKFB3 30k, IRAHE AR I R S 0 TR A B I SRR B o 00 1) ALt 68 P R o el 2 T 285 BEL B
MR UTAR[21], R8T ¥ BRI AR I 4% R 1Y) PFKFB3 REAE— B F2 /5% L PF R .

TE AT 2L 20 M 1 UL AT e i i s AL s R b, TGF-B1 VB N B SR T, "B et 2 & - B4
i OB AR A I Rk, K REIEAR P R)=) 3-B IR H IR B (b v H &R, 3 — D IR R & & Ak
[22]. ZSFEH, mTORCL /E ML RTEIRAL, JEI AT # %K T ATF4 RIS, LR - HER G
RGBS K TGF-BL A SRS A Bl W TSR, Hp 5 PESE ] mTORCL SRS, #4381 Rapalink-1 78 A i sl £F
AN (NHLFs) 1] 58 4= BT TGF-p1 %F ATF4 (%S,  ELTR WA 2 RE A Rt Ins] TGF-B1 51 (i
#58[23]. A, TGF-AL kil circHIPK3/miR-30a-3p/FOXK2 [24]41 RNF130/c-myc [25]H 415 5 flifie i3t
FRET Ak b (R B AN 2T b 3h R . BRI =, TGF-1 —J7 i i circHIPK3, L] miR-30a-3p,
MM fERR T miR-30a-3p X FOXK2 [N fEA, i HK2. PFKM. PKM2 il PDK1 5 i O g 1 3%
I RALBE AT YRR 35 Ak s 55— T T AR AR i 5 30 R R E3 i R RNF130 K&, /b c-myc 1)
2 EARRR, 958 c-myc X HK2. LDHA F1 PFKFB3 SR i S5 D8 1 I e St EA RS, c-myc
LR IA TR S RNFL30 X B AR R R4/ E L, 3 — D T s s b & 71 B R Ee R . TGF-
AL NJERMIERE e B A AN R & 2 AN S, ARAE 1 RCT AR B 1 E R T s A 2F A R B R

VE BRI e RV S AU M, 5 W A4 36 5 G 3R B O3 RO PP 355 PR i 4, Rl 4 AR 7R vp R 5
YEF - LPS [k g i = it B4 INK A5 S5 3@ B 754k, (23 TNF-a [R50, o538 AT 4 20 fg it Ak
PR, 158 PFKFB3 [M3RIE, S ZHES)) 1 il et 4 4 p e vk 4 3 7= R B8 2 FLRR[26] o X PRI S5 1 2
BIAE R AER, AT YR MR s AT AR M ALIR, SO SRR T B R, R kL AR SRR G
hak. HIF-lo & HIF FEN = KR FE BRI Z —, 5508 S SR (GULT) FINE B2 AR AH G B 1A 7 SR 1T
HIF-Lo F 3V 3 55 7 T AN 5 B 1) S 3 0% 45 #4938 (TAD)——N 3t TAD (N-TAD)AI C i TAD (C-TAD),
K ANEERIR T 17 HIF-1a F0RA5ThEE, b C-TAD Af DLl #1 2 5L80G% T CBP A1 p300 ki
BEBE TR ) I A AR FH[27]. TGF-BL 1755 i (110 L B 2T 4 240 i 55 A1 s % 25 T b 1)) W A i v i /NS A AR
A K HF(PDGF). I3 4 Bz A K BT (VEGF) RN J 3 8 11 1 (THBSL) R 4F AL LRI R IE,  Zad
TR T LRSS p300 /T AL A FLIRA B SE . it — DR e, IR BN, LR
B EEEETHEA, B 7 HEABERRIES LRI A miuRtE[28]. ALY T 1E PF
EREAIAE M2 HeAb 5B E A S5 UIAR 52 [29]. 76 BLM %311 PF /B E W40 b et 634 1 e 5 Re A
K ¥ 2mRNA 4558 H 1 (IGF2BP1), H m6A &1fifiE THBSImRNA, #iiEid TLRA 5 5%,
LRI IR E R AH L M2 RAVEEAL SRR RIS 5, T30 IGF2BPL Rl /M i % #2

TEMG A 4G (PR) R A ik F2 o, PR A S5 0 15 A Bl b e A Thae 2k 1, I8 3 s b - R
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TL(EMT), oo i A AR 2 g A E L A rh R A 7 OB R AR F o 2ot R I G Bk il ACSS3 (1 Rl
i I R A0 AR S g R, HLARIA N B T S SRR I AR O T N A SR KT, (RIS S i e 2
RIAREN 15 (2 HE ROS AL s ANAMG] H 45 £ Higte, LR SHCE LM RIhRE S IF ik EMT #HE. X
Sl IR, 38 I W AR AR AR I R R 4% LR A RS AR R AL, RS L R A EMT K F 4
A3k J 1) = AL [30]

S5 LRTIR, AR I3 SRIE I D R 5 A AR AR SRR DL R A LR AR AR A, 1E R i i
TERE T AT A B Sk, TR b R PR TR A 2 R I T L Th e e . X — DUKEEE AR A AL 2
M E AR, 7 AU T T S R R AT A A e b RS 2 AN AT, AT R
PF i3k & I TE IR T I (A

4. SBEIBEEERRIGTT AT 4L S MIE R LB
41 N FHEN

IR-780 & —FP¥E ] AR T ZL AN G k), e S MR DR FA BRI 8 A(SDHA)TEE, A ZUBH TR R
AT HIF-Loo 2@ b IEEE,  H0HI 0L 27 4k A AR 5 25 2 T2 110 [R] IR 75k 40l ik 384 558 JUTL s £ 408 200 i P 945 B8 2
N, 755 SDHA R FEHIHIfil & (1) ROS MK MESE M T2[31]. 7EFR S T PR 54, 1R-780 fg T IAHE
AR AR DS IE DR (2RI, i AT 44T i o AL RNt g A R S 4T 4L IR 7, R 2B R PR 3EFE[32]

Eh 2 % B JE (AL3818) 2 —Flupi Y 22 41 s I S IR W A 1) 77, 5 ek Je A BAA A R A HE . edid
B A I A A K RT3 K -2 (VEGFR2) B BRI 1) ATP 454 48,  RIESERIIHI/E T,
H AT C g HEHE 9097 R R VER AT 4E 40 [33] [34]. BFFE R, 7ERREAF e Lit f2 R, PCBP3 mliEd 5
PFKFB3 mRNA E4ZAHHEAEH, DA ER 77 20 Bl PFKFB3 Ki&, MG sR | i . <P &
JEMIFEHNH] PCBP3 IRk, FHWHX — (R 214k 4k (AR TR 42, $0ih e 2T 4 40 v LS 4T 4 240 i R #4540 (FMIT)
IR LA BINGE T 4R 4L i R [35] -

Table 1. Mechanism of action of small molecule compounds

F= L N THEYERILE

47 REER  EEHTFEE TR RS SRR
UT 4T 7N S A
IR-780 %{%ﬁ Wﬁ(%gﬂi‘)@ﬁ A g SDHA I, SR IETS WRM (31 [32]
WML TR BEERE FE T PCBP3 %} PFKFB3 mRNA (1 &l P8 55 1
(AL3818)  Fgfmilz | CDTO/PFKFBES FiL 410 e 4 A [35]

Table 2. Experimental doses of small molecule compounds
=2 I FUEYLRFIE

2 HR SIS BYiNIE TERRER R RRAS
KA BLM 5 SD K fRP: 0.5 8 1 o N
hobh: TGF-L SRR 4 molkg: 1A4h: ifﬂiﬁ?ﬁ??;‘ii’;%

. YA A HFLL 46 0.5 uM & 1 pM i 4 SISCHVI
IR-780 \ T L I L
R : C57 /NR(HIRIE S 20Gy); &H: 2 mglkg: T, 2R PF HERR

A4k : MRC-5 4l fi(TGF-41 i%5F) &4h: 1 uM
S AN: C57 /MR (BLM, 5U/kg, K&  1AMN: 1 mglkg; MwI R egnpens  CHtHER T8

W) RAh: ANRIEARMRLET4EAn  fRsh: 1pM T fb, (RIS STRRERMERTLE

J& (ALSBI8) iy TGF-p1 (10 ng/mL)AbFE 24 /NKF 4bEE 3 /N 2 Yt (IPF)
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gR b, XERHIILAE 1. R 2) AN _E387R RS AR PR A AOROAE R, tASIE T IR-780
5% 8RR /Ny TG Vs A R QSR et 2T 4 IR AR T TR IR A2

4.2. RRFPEETEDS AR HHIH

BEA /N7 FAL G I v T A R T AR AL FE RO, B AT IR e 2 R ARVE 1 7
5 R 2552 7 s, BT 22 40 b IR FH R KRt it 4 4 A S AR 10 84 0 B EH R i T A (L 3%
3. #4).

JERTHIWT 78 ©AESE, PI3K-Akt-mTOR/PFKFB3 1X — 4 LUl 45 /5 LPS 1755 (1) T 4 41 P s Ak v 42 il 2
FR T IR A J 2] o 3087 T 25 55l 7510360 7 SR T S 3k 4] PIBK/AKYMTOR {5 58 #%[36], 76 &% A iR
RUERE, MIMTZEM BLM 5 S0 2 505 (AL L4k R R A 4i4b . £ RIS b, BART
& SRR 1) U1 BF 2K H (Peimine) [37]tHAEE AN PISK/AKL JEEKXHE Fif [N T PFKFB3 £ 3B B R
172, BTN AT R0 T AL T 2 PR R BE3ERE[38] . 2K AR (Rosmarinic Acid, RA)E NS Rk %k 7
RV 2 By 2R A, 75 SRR IR F 0 255 TE(ARDS) I Y [39] L 45 1796 [40]  FARSERE AL [41]
R 280 AUBIT I /1. PFKFB3 Ay PFKFB S5 H ME— 1% 8 A i 0A, Fe M A 7K1 2 4 it e 4
PAMBARAS S SR NI, SFEOZT R ZI, WEREAR I FE 52 204051, AT S DT 2 7 0k 30 P 41 44K 1)
A . RAXT METTLL/WDR4 S5 BAHHITERH, RefEMK tRNA 1) N7-FU2E 58 (m'G) (21K - [42].
RA #iil METTLL/WDR4 /i F [\ /M 7& t(RNA m’G &40, FHWT T 45 H5 L 4 4455 B tRNA @4t
WA IR AT INIER S 45347 1) b 5 240 o e S 2T 4 200 L 7 A 3t o 3K 4 6 ) 308 AL PR v D B 3 BSR4 4 A
N PFKFB3 H#RIA N, HAFHIE FMT i f8.

7 BB (Sinomenine, SIN) & MAE Gt H 267 XUEE(Sinomenium acutum) FRH B S ERR A= W, At
0] PFKFB3 5 I FE R B, Dok 55 2T 4L 40 i 1m) LR AT A M ) 0 AL RE ), B 4T PR (1978 /1[43] .
SIKHAL T (ECC-IHR/WE MR EE . R R, JIMRER. BV SATA AN 2 45650, b
[F 4L n] EGFR/PIBK/AKT A1 SRC-HK2 XU &% 5t PF VEH . A {BIF 8 [44]0E 52 HA 1| EGFR/PIBK/AKT
55 LW AT AR E AL, S SR [A5] RN R R H A B S IE S SRC BN EITR, RTFHET HK2

N SRR, AR H3K18 FLERAEAK T, WIS AT A0 B i AR, e 2% SEI, PR i 22
. 5 A KM ZRAL, R B R T ) AT 4 A R A AR AR 4T Ak, (B LR FIMLHI A AT
AN, %7 IS miR-29b-2-5p 71 [ % HK2 3Rk, $bIpEREfm &, M SO PR )9 21 FE BT [46] .

Table 3. Mechanisms of action of natural products and their derivatives and traditional Chinese medicine compound preparations

= 3. RRFMRETENShAEHHIFIERNE

&K S/ FEH TR e R BICHR
e O UHZGHIG, JETIH PIBK/AKUMTOR {5 o S
Eillog ik 570 24 8 o A% P R R A 1 [36]
m\%.t“:qa DUBHE ) PI3K/Akt/PFKFB3 ﬁﬁﬁﬁﬁ@%ﬁ?’ A ARET AN [37]
(Peimine) i
. BIERIREE Bk A AN, S R AT 20 O
WERR yw Lmpkian PFKFB3 BERRILTE, AT BRI 4 [42]
T T, TR 2570 U S0 PFKFB3 F 3 T i PFKFB3 [k [43]

kK i
3@ TS EGFR/PIBK/AKT i i 4

SKFR AT 25 77 17 Emﬁ@“ﬁg‘ BRI f: M) SRC T [44] [45]
. HK2 fi5, 0 seF e ok
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RE (EELZ) 24 . i MiR-29b-2-5p/HK2 il se£F 4
RE A il MiR-290-2-5p/HI2 a5 AR R el

Table 4. Experimental doses of natural products and their derivatives and traditional Chinese medicine compound preparations
F 4 RAFHRETENSPASFHIFILETE

B SEIOHER] BHHE Ve BR M RRZS
ZZff BLM Bl &k

IR B A BLM (3 mg/Kg)ii 5 C57BL/6 /M, BW: 1. 2. 4g/kg i vl 1 PE W PR AT 52
. E ~ f&W: 25mglkg fil 5 P R
JIBRFER  {KN: BLM %5 C57BL/6 /NR; 144h: malkg: f4h: 50. I LT 2 40 B i AL AT 4

(Peimine) TGF-41 (5ng/mL)i% S NIH3T3 41 2R BLM %551 PF

25. 125 uM

FH1E T PEFKFB3 [ 2.1

fh, T EMT, 2283 IGIRBTRFE
TERS SR PF

e KA C57BLI6 /NIRRT 15 Gy)s  KN: 1mglg; k4.

HIRT fish: TC-1 A1 MLE-12 150 uM

AP : BLM (1.5 mg/Kg)is § C57BL/6 /)

HRER B #ESb: TGF-AL (10 ng/mL)iF% T/ i
JEAR i e 2T 44 240

AW : BLM (5 mg/Kg)iFs 5 SD K& RN 3.189/Kg  #I HK2 A S HALERA:

N B 5 TR
SAIMUTT fhpy: BLM (3 mg/Kg)i% & CSTBLI6 /N 1 7: 6.82mglKg: 1 wyuis. sz BLM 15 TR BIBESE

R : 100 mg/Kgs 4 4] FMT 48, 25

G BRI
#h: 50 uM PF [YZNIR TN

s AAoh: /B L1929 4l #k: 15, 30, 60 pug/mL S i 0 48 RN 2R LAY,
K TGF-pL (5 ng/mL) %5 MRC-5 41 LO% KRR & W92 ) T T ALARIRE o
M3 Motk

43. “ZHFA”

7 8 JOk T80 J i TR B REFIR-1 324K (GLP-1R, —# G R BB Z44)J5 . BEA%IR NLRP3 5 PFKFB3
Z BT AE ELAE FH CAA I R AF e i s A, SOEIEHISS p300 M-S 4 B B FLER B, PRI H3KOla #1
H3K18la L5 R ML FRic, FIRIELFgefb LN EESt, S PF[47]. — B XUIAE BB R 16T 4 8L 254,
7 PF G2 b S 00 5 R R AL A 8 B T8 o SOU 3o 94 P M 1 0 AMPK B R Ak, IF:
PRI RRR AW | 35, PRI LPS 5 S0 PF HERE. BEAh, B g SR AMPK SRR L LIS ST HIF-1a /t
FHA SRR . %] PFKFB3 IX3) 1B RE AR SR R & i, FFiEiE AMPK/mTOR i@ 4% PFKFB3 7%
P, 5 24 BELIE ity F3C 2T 2 40 P P2 S ek R 5 9 L e i 3 45 ) 2 ¥ [ 48] [49]

fh 2 Ath R (TMZ) A — ofid ok 00 1) e 25 AR R AL (i 0 267 W R P R 8115 RE A I8 A 2549050 7E
FALEE(S0 mg/100u)i5 S0 KB PR BRI, TMZ VA T BB T =B AR /KT, R PR T Fr &R
JEVTARI R IR & & . TMZ X SeOR4 1 FH T e 5 401 LDH v& 1%, 800 B B AR R i FLRR AR R
Ko EMREREME, TMZ ORI Z — JRANTE 2 AR T BE PR AS A U e b ik R = A
X S O B AR R S DRI . SRTT, TMZ 156 98 RE RN AR S B0 VA =55 78 T AN AE L3677 XURT I
REIG[51] R BA EEE N, EILRIE ISR B IR, BRI S i S A RO A R R R R h B 8
LLFE BT PF [52]

TG R d 2GR il 2 AEA VR T T AE AN AT R A2 IR [53] [54]: —ZRAKHE T 1 O s i ik (AL B)
WIS TGF-1 15 T ) LRRNS/PFKFB3 38 AR R 1 75 SRR, 30— 2530 e 27 4 41 17 LR T 4 41
FFEAY. . 252Kk M (FBZ) W i BB 45 A W L AN 0 e B 1, 40070 58 28 W 30 G I 4 P2 BT 4 20 B IR AR
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W, 4K E0E AMPK/MTOR 38 5% LABH KT TGF-B1 755 B R 2 45 24 i 4% Ak 12 18 SR AR

BT RAR BTV T A — PR 2 AR AR s MR U B R B AT 2, RIS BRTE R A B SRR TR DL
FELIT DNA 5435, A RO AT 80807 6 IR 8 123005 S 3 A H [55] . £E PF #EfEHr, TGF-p1 @it Fifi
AMP/ATP 5 NAD*/NADH UAA X3 Re S AQHFESS , ZURETT e BH 15 RO i S Aad 5 e B A% 0 i R 1
NAD*FI NADH, {#i NAD"/NADH EIKEIER . WEIEH T NAD 3 —D3uE NADYKPEN 2 Bl
SIRTL, #iT i pER AR OXPHOS <@ [56], #1iFs S AMPK i&ft. Ak, &BEITIE NS ROS
TEBRA, S FRREORLIR ROS /K, 4EFFE AMPK /3 IZRLAFaAS BL PF [57].

ERZGYI(NE 5. K 6) ECRIES T JRIERIEAE, (H 235 A i T TIURE TR A 1Y) G Bek AN e A
GRS, DR ECM TR, 22 PF.

Table 5. Representative mechanisms of drug action

F 5 WA KRHBERG

47K SR/ EEHTHA fEFIHL SE
i & ik [k GLP-1R. PFKFB3. NLRP3 FO5H) 2T 2 4 i rP 4 B A LR L [47]
. . AMPK/mTOR. HIF-1a. WoE 7T AMPK,  #ii# HIF-1a Fll PFKFB3
e R PEKFB3 T P YA A A
e o LDH MR R AR [52)
B R 2 L RRNS/PEKFB3 & LRRN3, ] PFKFB3 A5 [ i [54]

TEf, 40 FMT 7%
A e g2y AMPK/mTOR Wl AMPK. i mTOR FIA b % il [53]
% 7 SIRTUAMPK, 1% 7 TGF-p1

FRRARETT  AIRLRY A NAD+/SIRT1/AMPK R [57]
Table 6. Summary of experimental doses for representative drugs
F 6. “BHIA” KRAIRFIERLE
B SEUERY LUNE ERBR KRR
P TR (100 mg/Kg) 55 C57BL/6 853 T NLRP3 5 [ S
Fp ey OB RS TGR-pL(10ng/mL) + - fkPY: 150 ng/Kgs & PRKFB3 ZIIIAITLAE  py p) '; I
N IL-18 (10 ng/mL) i SN RUEACI AT 4E 4b: 10, 100, 1000 nM I, ZEfREEALEES] T )ﬂﬁi B
Y, SiOz ¥ Sy ELE 4 PF :
fAN: LPS (5 mg/Kg)is S C57BL/6 /v 1AN: 65 mg/kg; 1A - P s
XU B fARSh: LPS (1 pg/mL)iF S MRC-5 4b: 10 mM ﬁn%ﬂ%gﬁé?é EEE ggﬁg 13;);?:%2
;s /B L929 4 (MRC-5), 5mM (L929) e Ak
NEQ P SiOn A, P Tmgkg R PHE TREUMEERE T EIT L

WA RS R

(BP: 100, 200 WIS T RCFEAIIIE
mg/Kgs #5450, AL, ZERT BLM IS0, | ‘E‘ggﬂﬂ
250 nM FESH/NR PF =

) 7 AT AE AR E RS TR YT S
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