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Abstract

Bone-inducing biomaterials with specific physicochemical properties can induce osteogenesis at
sites far from the host bone without exogenous cells or growth factors, showing great application
prospects in the repair of large bone defects. However, the mechanism of osteogenesis induced by
materials remains unclear, which limits the optimization of materials. With the cross-integration of
disciplines, mechanical transduction has attracted extensive attention in recent years. Mechanical
transduction is the process by which cells sense mechanical stress stimuli mediated by material
surface microstructures and convert them into biochemical signals, and the perception of mechan-
ical stress signals in the cellular microenvironment is mainly mediated by mechanosensitive ion
channels. Transient Receptor Potential Vanilloid 4 (TRPV4) channel protein, as a mechanosensitive
channel, is a core molecule for cells to sense mechanical signals in the microenvironment and plays
an importantrole in the process of bone induction. This article systematically reviews the structure,
function of TRPV4 and its role in physiological bone remodeling and material-induced osteogenesis,
and discusses the design strategies for optimizing bone-inducing biomaterials by targeting TRPV4
channels, with the aim of providing theoretical references for the optimized design of the next gen-
eration of bone-inducing materials.
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1. 518

N BRI DL E B AB R, (EXS TR UIER . A5 a0 KT AR S5y, AR A A Ao
mEfE Y, HARBREEIAWR, MK RER[1]. HAT, &SR RTE 2 am a e,
YT SN T ARSI, Hd, A RIETURYE, DU EAT SR B AR R S,
W NIRTT ebriE[2]. AT, BB BHEZIR T RO OE S BEAL, VTS AR R RS %
ffE, AN LERE TR Z i, B SINERD  tha2 iR 5 F RORERIZ)[3]. R 5
T~ BAEHESUENEDMBREETE . &7 T DR AT T A B KR 520 ) AT 32
s FAREEALCUILA . 5N AN S E T MR[4], 1Kl A KRR B k45 (2 2 U e e T
RN AT S . ORT, SRS AR A AR L5 1 I B 5]

B 2 2 R SRR A IER N, HUBE 38 B F A TP IR I 2 0RE, uRs A oL B4 1B
MLA[6] [7]- BUBEE T A2 A0 MUK AN UORI B A L B AR5 5 O RS, ke o T 20 MR B i 26 Bt 50 7
U 2 T TE R LRI RN [8] . Horh, BRI AR AL A B AR 4 T IHIE 2 1 (Transient

DOI: 10.12677/hjbm.2026.161017 164 AR


https://doi.org/10.12677/hjbm.2026.161017
http://creativecommons.org/licenses/by/4.0/

RUEH 5

Receptor Potential Vanilloid 4, TRPVA){E N H UM U PESS 851 (Ca®)iliE, 2Ryl ZRIE, REBIEK
KIAERMERRRIE (I BE . RIS SN 77, % Ca* iRt e 3h NiltE 557 S, EE AP
RIFEZVEH[9]-[11]. ASLETERALIAM RIFEFF @ TRPVA @B 515 T8N 4 FHLH 5
wrotitie, VA E SRR ot SO0 HEE AL A AR AR .

2. TRPV4 BB #ER
2.1. TRPV4 iBEHIE I

TRPVA4 & —F £ ZXf Ca2* BB IEERARIE BEVE PN 25 1, )& T BRI 52 44 fa AL 75 55 3% (Transient
Receptor Potential Vanilloid, TRPV)BH & 18 iE W % [12]. TRPVA4 T 2000 = 1 IR P ke, R AEAN R 5L
36 = RELH PR SR AE, MR T2 AN 4K, W VR-OAC [13], TRP12 [14], OTRPC4 [15]f VRL-2
[16]. HE% 2002 4F, “FAMGINX LSy A —ili, IR 7 RA TRAIET R, X RS
HARUE 5 Z M S R, NI 2 0E[17] -

2.2. TRPVA BB SThEE

TRPVA 730 T8 /& —Ff H DU AN AH [ A S (%% 871 AMEUERR) M4 B [ YR VY SRR BS TR AR 1 . A
FALT 6 NI o BRNE(S1~S6), Hirh S5 5 6 Z [AIAFIAE DY TR AR rh LRI A T — A FevF Ca? il 1Y
R FLIE[12] [18]. ZIEIEM N ¥ 5 C Imd T, M EMAA I ReA . Hd N it & &
IR (1 45 K35 (PRD), 4 8 1 B R L5 I5(ARD) L K BAT S5 MO RF AR A IERRI: C It & TRP 453, 45
W A& S I5(CAM) LUK PDZ ZEikgi. X Leg5 iR IL R 2 58 T8 i) i 42 5 40 E.AE 18] [19].

TEH MU E B 7 I83E, TRPVA RENE I SR TG Sha i . 5T NI 5 Rt AR B D) 2 g 58 2 T ) B
#[20]. AT, HHUEE T L] ZAAE PR B HERE 5 MG . R BB, P
215 R AR T AR 5Kk Ak, AT B4 S TRPVA A QORI JR B . TE A
LB S BN RS R p1. MIE RE OSSR E A5 ) &8 2 TRPVA, (R HITHRES
[19] [21]. TRPV4 e, A H) Ca?* Wil RER A — REI Tl 5 i, 2S5 2 M AR m
P, ARSI S ERATR2]. WA RSB [11] L L E R L E 5K 71 5 J 2 17 [23].

2.3. TRPV4 IEE B EREFHIER

B ORI RE SR T B P AR AR B AR S AT R [24] . PRER T B 4 M 0 e 36 I LA
T I W S T A B A A BT R SR R, TR R B 0 IE R R S S I S [25)
TRPVA {ER—F Ca2*n 1233 BN UGB TE , & 4 PRI AR AL T3 012245 5 I OB B . W AR B, TRPV4
A I o S 2RO S B A Ca?tE 5ok gk R B AR AR AR [26], FERT B A . BT 4 S R 4 X =
KO IhRe A i B B sk B R EH .

TERCE A0, TRPVA I8 AU A A 55 5 DU BT . 11838 1) Rk B
FSCE ARH ) ZATTT , me SIATUBRRE ) 5 A 4R R GBI TE [27] . TRPVA B0 5 (2 iE 40 Ca2* AL,
— 7 T B IR B B E 4 Ak S5 LR Rl (U Runx2. Col) 383k [27]; % —J71H, #id#i% Rho/ROCK
PRI N AR YE . FE DRI B, B AR R A MR KT R [28] . ez, AEtTuAR . mRE ST
M HE] TRPVA 51 Ca?* Wil Runx2 1245647, BIRE AR [29]. DL BIFSES$E R TRPVA 75
SR NS 5 R EEAEH

TRPVATER B A0 5040 5 Dhse 75 b 1V H © N2 A2 A3 B0E S8  AE A 40 i 4 A R o, TRPVA
BRI FRILEZE FIH, H mRNA K] T 2R 175 SRS A 15, i HoAth TRP IEIE R, $2R HAER
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BB R O R AR A, A OUEIE i RANKL. OPG %Kl R Ma il i 40 M (s 4, & mT
7R 2 ORI 19 R A Dh RE[33] . M IHUIBURRAAAE, TRPVA 431 Ca®* Pyt /2 40 i ML AL
RIBAEIGE S . X — R R EE RS S MR BN RN . FEHIRET BT, TRPVA AT
PARBY D) /70 220 Ca? PR, 25 10 IR 9 8 F A A5 5 A B [34] . AEA SRIE AR, (RIS RIS AT it s
TRPV4 LLjHz) CDCA2 {55 i, #EMRIzllah (5 (e dt i SR T BAENf, AT 7 22 R A
28 AN 5 HYE[35] . JX Lt AL 45 AR R T TRPVA 1EH5 40 (5 55 R0 45 M3d I T DU B e e O P

3. TRPVA BEHEMRIE A E P HER

FEB SO, MRV B S S A S RS IR o XS PSSl I 0 3%
T ) 0 2 I S 4 (s S ) R O B N AR A AR 5, RETTRAZ B o USRI, BREEADRHI S E R T 45
HEY T [ 5 5 S B A - LA M2 Ak CLIRAG B B 5 [36]; 25 L SC AR5 M I BE A S8 3 e il o 433 )
EE[37]. Hrh, TRPVAMBIE A R AL G, @I BRI 5 ¥ $h S5 K 55 2 My BRI G A5 Ca?r
Pa i LABKEN R 34K

3.1. TRPVA BB EMRIES N BT T & | o P RER

B TAR AR OB e 7E TR VR 428 18] 78 B3 T4 R (MSC) IR B 44 » BIFFERMT, et 2 e P AR T
NSRBI 5 [38] TRPVA ADREHUBORIEE AL NI A Ca? (55, T SAP R ERRHEXT MSC B E 7L
Fd .

2 W5 AN R D BRI LR PEAIE S T TRPVA FERTRNA- G 10 o (K B A o AN 7K BRE PO K
54k, JH3) Ca?-Wnt/g-catenin 155 {2t & 1 7 72 /5T - 4H U (BMSC) A B B 734 [10]; HARiE Hin sz
BRI TR, TE R NIEERR ERR IR BMSC (R peE 1 F 2 358 [9]. 10 Hou % A\ [39] 8 746
s BRI AN R BRI RE T 8 3 EOR R I0E TRPVA JEIEAIS| & Ca* N, JHIR%E) Wnt/g-
catenin {& 0 55 NFATCL % 5 ({3 BMSC FUE 43 ik, KSR IIE RS T TRPVA 78 G4 kL2t
REPEVE 10 MSC RUH A6 H 1 KR B AL

3.2. TRPVA BB EM BN BT R R EH MR &P RIER

TIEWIA AL B S B E SHAEPRE R SHEER, KAV BB g 5 ik m
BG4 m[40]. FRFLR, B FADIMEHOY)BLRE A2 PR32 S R OIA SR (1 B [41] . AR RS,
5 3D FTENAFCIRA Pt T i@ 75 5 E VR4 M2 Bl A AN 2 5 23 (0] 70 A DU K BB i [42]
[43], WEFEH— DR T TRPVA &/ SRR O 1. thbasie . BRI A FFHEEZ Y
HAES, Hl@EdBeE TRPVA X — JL A8 EE 17 e i i, N2 M RL ) B 75 S RE[11] [21] [44].
XL B | TRPVA (R EHE 5 5 S A S B 2 E A .

4. ¥8[E TRPV4 BiER B FSEIM RN RES

TRPVA JEIE /& M BB 5 S A M A W 54T R 42, WE e B 02 28 9] 70 o 448 i 9 B & A
AL I B O (A S B T K. AR, TRPVA 2 75i@ i A p g 2 5% /2, H Al sk
ZHARIE . (AERNE, WA MBREMENS S RE B BGCEIEN . Bhatet, Beadinaeisd
I3 ZFPE 5 1 (W CTHRCL. S1P)i5 S MSC [ BCHE 7040 [45], F ELAEM RIE N 5 S0 A1 4 B T Bl
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S BEWTATRL A R KON, T A S M 20 TR B RE 7 SE R T A R 5 59 e 1A FE R AR [46] [47]

T TRPVA FENUE: A S A2 rh AR, BRATHEI AR B 1 7] e i i s 10
8, IR AR L S D RE, TS HRE & 2 T4 S e e 2 0 S R0 R 2 1 15 3 R A X 4%
PRIk, PATRPVA HEAR B —AUE B MR, Sy — MR AT SRR ST [ it S m) A 52
PIMERAZ R TT . — AL IS SR o AR R 7R TRPVA Re R Il R s hl AR R N ke, DAELHM
i TRPVA SRR o (HIZIRNE P 0 [ EUE T 25 M RORG HERORE, R0 RE S BUMIE R AL, T
e 0 5 7 A A B PR [9] . R BRI ORI EE « R THT A 4125 4 SRS 5o S PR
N TRPVA SEAEELAE ) ) 2R BA 55 [9] [10] [39], %77 ARE AT BIASRL B B Ja 11 SEBL XTI T AR 2 33k
s AR AR B R g

5. Piezol BiETEM I E S E PHER

B2 7 TRPVA MG, 5 — %52 KM UMUK 2 7@ iE ——Piezol, {EMEHAEFRUCHE IR FFEE
. Piezol Ref% B BB ML TK 1A (b, Jd i FURE ) = i MR SR G5 M A LR = AL
MM B SEAE S, TR 30 R AP i (48] 55 TRPVA 32 B AR R LA UAE = (A0 2= BT
JE SR AG) AR, Piezol 32 B4 S M PR i 5 BE AU [49] o 1E 2 I Aot T ) 22 R A Jek
o, fEEMEHL P REZMIER, REBSANFEEEKNNE S, LRSI E R E R 8%
[50].

Piezol 7TEF4HMI. HUE AR EWRAH M5 2 Fvig MO T 2 Rk, SETRS AR R CEE. o
FUFSE, Piezol XFIEH HHE K B A MBI, HIWGEE K FECE B4 F 5 FIHUMGREE T, AmsEng
PrAKE[48] . TEH BRI /7T, HUBGRIERT B B AR Piezol MIFRIA, IXBNHLAIRRE WAL o34k IF 55
W TGF-BL 5T, MM B HA A p i 3R, B 9 B RBE[51] - (FA 9 7V B T R i
BRFI/N ARG, 25T Piezol 1ES- PRI 1)) 12 3R0E, HAEMR P HoAh S e 40 M A B 52, A7)
WL S RMBIE R PSR R B . AV ENS S B FEAE AU, Piezol FIFERYEE HER M.
TR, A AERGKE T LUB I GE Yap (5 5 9F LR Piezol ik RATHE & FA[52]. SR, BT
ZH R T RACEL, B YAP A S Piezol b K uE B aRIFIN KA, (R JL BARHLE] AR 5E AR,
IXRR T BT g5 PP RMI AT T BE B OV A e B KRR, REKE A R B B B AR B
AN MRS Piezol AEYIHEAE S, AIMRRE TS ok, IEREBE, e - REES
FASRAE T BER[53]. WAk, 5 TRPVA Al /N Fishifl(n GSK1016790A)F: s AHE 10,
Piezol [HFRMEBANF Yodal Tk T FAREAL, B8k TR 4E S 28RBS Piezol-F-actin-YAP
G5, Rt B M2 WA, ITIE RO SR A S E A IE R [54]. XL TTAL [, Piezol
VBN 5 — R O MU S il , 5 TRPVA TEDNRE BIER T S E A S Bk, SRS 5 RNE S 1E
AR . BRI B TEARL ) S A 128 ELAE P ARSI e R TR T T TR A G

6. INEERE

ORTHIRR SR 43 ) A1 52 Wi R T W P B KBk, A AE T I BB EAM R B B S RE AL . 1E
SRR 5 S UEREMTE Z IR, MBI SONOCHE . BRI, LS S5 SHLHI A IR . L9k, Bl
WU T8 TE TRPVA TR B R M SR B R 32 P AR AR, 4R T RE R IE R R
YRR S A E AT NIRRT o DI, ARORWT T SCHEAE T R LI W] TRPVA U e i Rl 1 40 7.
G P A BE SRR AR S R T UL AR o XA O B AR 15 5 1 AR W A i R AT B LR
{6, OB AR AR SRR 7 OB I HE m 5 SRS KT -
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