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Abstract

Osteoclasts are the primary cells responsible for efficient bone resorption and play a crucial role in
bone remodeling. Dysregulation of osteoclast formation and activity is associated with various bone
diseases, such as osteoporosis, osteopetrosis, rheumatoid arthritis and periodontitis. Metabolic re-
programming in osteoclasts not only supports the phenotypic transformation of mononuclear pro-
genitors into multinucleated osteoclasts but also provides the necessary energy for their differen-
tiation and bone-resorbing functions. This article reviews studies on metabolic reprogramming dur-
ing osteoclast differentiation and summarizes the related metabolic pathways and mechanisms.
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1. 5|

I A WSS B TR I TR RORS AR R T, X — S R TR i AR S G B[] [2]. AR
HARAE NS 5 E B S SR, B BTl E A SR 2 SRS 22 P A SR AR S5 B VRO ) R A2 3]
[4]. Rt AR FC AR A JRE A5 20 0 P R A I A P AN R PR AR P s e Ee o 1AL, BPARG
U RE, 19 BB K 5GE KT T, ANERIR B R A RIS AR X Bl 40 K & s, s I
N T i AR G S i i B R A A is, OB ORI T SRR T 1A .

2. RREEYMEE

LR A MR AT A IR 1 SR B B, LB I TR AR, R A SRR R . &
BERR UL R N Wi B 55 =R R IE I (TCA JEIR) KRS S JFRE . 3% — 3 78 7 A 1) e e LT A4 v] Bk 5l
TABEE(ETC), JFilid F AL BERR L(OXPHOS) ™ AE K B IR M A% T — BEFR(ATP) [5]. 4l 2otk %z
(10 384 0368 5 5 T SR I R B A G A G BR[6] . R A M LE DU BRI AT R R i B R 2R i
[7], AR AR\ A2 kA L HT AR A0 B [8] 5 F A% A B SZ A0 AL A& (RANKL) 5 3 il 5 | ik
[9]. HLRRIRLEY) A AT REAN DS Z RN 2R, ik S A 4 B U 8 S A s 32 Ak -y LB IR T 18 (PGC-
16) [10] [11]~ i SEAL M BEAR B S0 % A~y (PPAR-y) [12)FIMEB R AN %% 4K a (ERRa) [13], T H%IEW]
TEAR 40 M 7 A RN Th R R FEFEAAE A

Horr, PGC-18 A& fil i 4l 2 b A 4045 ORI R R DG B AT R F . PGC-1p8 3 A (R ek 5 850/ BURK:
H PRI B ThREZ A0, FEEIE R . HALH &I RANKL FIIBCT, RIS 5302 (ROS) I
kAT CREB, CREB E#:AEit PGC-18 sk, MIMINEME AMMEKIER . H RANKL 73 PGC-18 %
RS IE IR LR 2 L (Tl N BRI K, IRk m 2Rk i 4%is, iE— PRk | Zohiikig
PEFN ROS FERL[10]. #R1, FHFsHRH, B8 REFFME PGC-18 ARk /N R B & 4 /L IE S, (B0
UKL T BRI RE 2 AR [11] 03X 2k B P (A — B AT R VA R T B 456 FH 100 J2E DR Rl PR B AL 1) 22 5, i
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HATFIF) cre R&(40 Tie2 5 Lysm), X A[ge/=EAFBFIRCR . HAh, PPAR-y nliE i f#{I% p-catenin & 7K
PRI c-Jun RIER AL PGC-18 Fik. 74h, PPAR-y i[5 F ERRa Kik, 5 PGC1p —ii
i OXPHOS AR AAFE R, MTTHG SRR AA A W) G 1 T SCRPRI - 4 D RE[14]

F—JiTH, kiR DNA SRR AEY) G R B R H B, ZBRREE KT A (TFAM) IR & S 80™ &
(RIRFIR BEER AN ATP P2 A2 98/ [15]. TFAM FER - 4H M H (9 D) Bk Kk 22 SO I B 35 BRI . ATP G
B, JRSRE ARG IR D . A RR, A R E E E S T IE 5, RIS A B 20 A R T
TR o 0T 67 J& () fRE AT e 2 TFAM BIERE, 51 ATP TERRAR, A1 R00/D T 4 s ATP IR
TR, A AR B 20 BT SR RS A LRI T R L D RE, 55— P B T RE 2 ATP #Eumfil R AR
AR, AT REIE L0 AMPK S5AL RS, B I B gm AR AR A4ERFIZ 0 D RE[16]. X L4 RN, Zhifk
AW BT B A0 BT BRI TS PR I B e TR E

SAEKRE, BT PGC-18 5 TFAM LA & 20 i v/ H B S AR AE B 8P i - PGC-18 B 1E AN [F]
BT (G0 4= B MR B 5 LysM-Cre 261 ril BR) 15 40 A 2 3R B T B 57 3 AN Rl 4518, 3o R DR R B 1Y)
I 2 Ry S P S B P JiE SR 1T TRFAM SR B S50 ATP FE38, (B4R 1 40 M5 42 e B (R it
WeThfe. XER TG “ReE - Thae” SMEIAFIIIA R . X800 & 3L [R5 7 LA BF Fe A3 43 2 i AR A 1)
55 0hRe. BBURr Ve KAk P AR 15 22 e

3. SLBBILSHEARS K

JUELRLAR L) U 15 9 A0 oA S E A F RT B 2 PR A BB, (4R KA Y 3 5 OXPHOS
FIEEERR, HHEHATAIN OXPHOS &l 4 A% i) 1 ZAE M) RE R IR . RANKL 155 Fi# I #5 3¢ [
T Myc it 520 OXPHOS {3 40 731k . Myc #8315 S ERRa %%, Mt S TCA 153
OXPHOS G R {1k o BHCE Al Myc [ 2k 25 7 S 400 5 LKA WP B8 ), I 56 4 B Ik it B 4
AERGIFE, TS EBUA NGB R EIG, ORI R 52 00 YRS K 1B TR A RE[13] .

AL, B HIR ETC BAYMARAATRE B FdE— P ESE 7 OXPHOS i R 5% i - 4 i 14 43 4k
BREEVE . B, RS 2Rk E Ak | IWIE Ndufsd 50T, BICE 40 704k K e e h R 45 Hy B
FEEERS[17]. S-S, 0H] 55 SIS 3 (SIK3)(E 5@ B el H A7) Pterosin B A & 2 R £ H
AR IR 3 AF S L PR 2698, 540 TCA B3R F1 OXPHOS, #HETIIR/> ATP Az pl,  fe &30 A 40 M £ 234k
s rE[18]. LA RS, OXPHOS fEfl & 40 i id #2 2 L ZE st EAR @S . 28T, Sk
H AR LR T AR AE A ], AR TCAR S EABERR A AT T IR, B WS T A S Y SR
Geo T, A C R A B P IR (— ol S 0 ) 2R A S A AR AR ) A T R A A, LR R
REJJ R B IRTH[9]. IXUELh AR, B A IAE /A B B S AT W e D RE B B i A 1) e AR AR X
AR 22 5 o

4. RS S5WE ARSI

T B 9 5 B A 0 A S D e B ) B B RE RORUE, AR OXPHOS $ fit S N e, Hiliiee
ARy — A2 L 5 rh BEAT AR I8 AR, th R IER  ARA AT R S A R ATP, T DRAE A R A e
R [19]. BEREMOEAT LR 2 R AR Y, WAE TCA B3 BRER & AT I MK IR IR & B 1%
SELEN RGBT R DAL I R AR 95 B 240 R A PAY ) I A R 3L s P 2 A B ) S i A 3R [20]-
[22]. CAWFER, £/ RBEARAERERE S, RANKL e85 648 CREIR(HK) . B R SRS
(PFK) 55 74 i 9% 5 (PKM) 75 PAY F) 22 AW T A O B Pl ik R PR 08, () P42 48 7L TRt S e (L DH) K% 7 5 W
IBHEA 1 (GLUTL)HE 5 [23]. IXSEAR (b Ak A s e 17 3801 240 M 6 7 A i BT 6 267 14 S50 A5 0 Y 22 4%
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0, LA LGS RAHNL B, B WE AR A U0 6 7 L Ik R P e U [20] o 38 e A D R AR e e U o )
2- i 58 -D- 781 21 HE (2-DG) H i HIK of 6 25 B (1) B B A4 , L LE R T2 e 0 A, 2 77 5 400 okt B 1 A L 434 [24] [25] o
DA SUE 5 25007 S YR R A X R A B R

AR AR WS B — /N S R 2R o X B A R DA LW 7 A 2 0 A W S RS, 4 e e e
fifR A 2R I Y58 OXPHOS K™= A ATP, {H [F] I WL 31 1 A1 4 W (R IR ST e 0 I 9, T 2 432 R IR ATt 1 T LA
T A R B 0 R R (LRI AR S S | AR R IR . RN, SRR < BOBE PKM2 AH i % -3-
T 1% 15t I3 (G APDH) 1) 5 37 LA Ak I 28] 5 30T ol O 40 G 4 AT X[ 9], 3k 2kt R S e W P A Dy B IR WA
TSR ptRe B A . UL, 18IS 2-DG X AR AT Dy REAMAR, T LA REL I AR 1 4 B R IRUST, T D 78 TR
PR LR AT DA HOX — ROR, X R I FLIR 2 RN i O i R AR i B 4. I B4 2-DG sl R it Ul
A (LDH-A) /N3 T4 50 5D N IR UIBR /NS, MR T ERAG 3 T A BE3]. LR REY,
R T i 2 IR 50 o A 4 L R A 12 ) B R R A

il B 200 B BIT E (1 B W WS 3 PN B0k ARG [26], BT S P T ) A T e s C AR AR T 1
YL TE S50 A . VR 9 B 40 20 A RSS2, R AEl i A E SRS R Sk R HIF (I T
) o WIE HIF-1a/HIF-2a 540 RER AR p THE HIF-18 4 580) R IERZ OIS ER . ZEBREEME T, HIF-1a
DAL 2L 0 32 F0T 38 %2 4 Von Hippel-Lindau (VHL) & AN S 1072 RALRE MR, HEm 5 HIF-18 T RGE M3
KR EGR[27]. fEREaniE e oI FEF, RANKL 15 5 R85 T HIF-1a F1A[28] [29], #UER HIF-1a W] 1
VAR A RIS E 1 GLUTL J¢ LDH S50 A PR, (I gk 81 267 W 15 005 B A g R2[30] o AT, A
I ] 7 R 4R R T ARAR T MURRL S5 M98 (1 1 (COMMDL) M oo b B A i i, A T 389 n ot 1 &0 i 2
[31]. (EAERMZ, BUE AR EHE HIF-1o 8, COMMDL fEAEFDIRA P E R WA R, (H7EHE
PRI Z BUORE S B A N REAT Rl B 2R [29] [31]. RREGIEHRILFIRW], HIF-1a A H 12 R
fRIETEE R B AR L 5 hReth R EEAEH, HORBEAM NMERI MR T
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Figure 1. Schematic diagram of energy metabolism and regulatory mechanisms in osteoclasts
(Created with Biorender)
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(AR, IEAERATIITEE Y OXPHOS o i B S R T Al 56 7 95, 2 PR S k2
GTP i Rhebl £ HHE B GORL IR, (ERBAWIRERAAR. SRh FCI8 T S SR i (3, (8
LrRALSUE A K (CTSK)IIRE /1 285, HEIT1I 55 I S5 MR R AA 1 B47 A B (32 3% — RIUEIE
T RREARE SIRIINAE " MRG0 . RN UL R T B A0 M T A AR LB 5 R A (T A S T
) B AR SACHHA B (REEIRER. OXPHOS), 3Bk s (R igeh 171740 (i 2 B4 A) 22 Se-Me s
PR RIS CTSK 15 MMP-9)ii2ei%, MM ScBLX RS Ak KiEREMR. 142, BEEANMR
FIAR ISR 2 HIThAE AR 2 RS, T2 T Al LA A R R SR (I 1)

5. WEERs PR IFEEEARIEREEREER

OB R R AU 0 = B SR, (BRI R R, GRS i T P Y R R
[33] [34].

F AR TE R B QML R A7 05 BB R Eh B Hh 4 A 2 58 H G HR ) £ €4 [35] [36] - JELIE BEAE 4
IO P B LA A Sy, AT DA IG5 R AR 1 A2 AR (LDL-R) 538 3244 B AL 1 (SR-B1) M M $5 Y Bk,
H e A 18I kA BOREL[37]. BEFURE, %5 B2 IR B2 (1 (LDL)JH [f e P 5 %o B 1 20 R i AR i
IR G ARG B R, RSB NG A 2R (LDLR) AR /N B T, BRCE 4M T e 1 R, LR A2
FR ARl A LR 2 2, B2 S8 B L FF[38]. iX—[A LDLR k2% 51 i B i i A et i, mradat 4h
VR PERN 70 IR [ WA DA B [39] . 5 2 AHX, 8 FH v % 2 JIiG 2k 1 (HD L) B HAR A 21 LA 3/ 5 44 o %o L[]
B BRI, SR R MR T2 [36] . ORI TE— e FE B b1 W 7 RN AR 7 v, ik o0 1) R e 1) 8
BRI AR YT R 25T L3 IR & 1[40, AT e Bl T4 i % BE IR0 s B B RO S B A R AR
[41]. BRULZ b, RH[E R 4R IR LS M T T H0[42], T IR AS /e B 40 f A i F2 7 1) RANK-RANKL
T IE K R AR F[43]

1 7 TR (F ) £ SR 56 458 P 905 A Sk B 1l 128 DA B o R 52 R 4 08 B 1 IR B G 2 [44] - TR R Rk
(FAO)Z T IR MR MM 1Y) = B 4%, JR2HE ATP S NADPH =4 [45]. KB i 2 1 28 ki A4 S Ak 389 i 2
RSN AR AT TR o BRI, R PR IR p- S OGBS CPTLA W i 22 H il 1 40 i T
B ELSON EREVE /N B N JC R BE R, BRI AR TR AR 1T AE 2 B M A SR R I T [34] . S UbIRIE,
KA A KB AR TR 1 #5121 FATP2 [ 3RIETER 5 4 i /4 i 2 e s MR R & /N B g b 238 B e 7
PERBREAN S FATP2 v B ZZHHI 0 A, HHAE LPS BN UIBR G S & FJBA T, A7)
Lipofermata 3 ik 90 il i 4 B 4 A0 A REPH LB 25 2 [35] o AN [F) 10 i iy B ol K0 ot B 400 S s HE AN [ R
YER, KBt 2 AN AN IR DT R (LCPURAS) A i 4 B R A7 3E oA R RS 26 B THT 5 e [46] [47],  TiERAR
TR (PA) [48]1F1 H AERR(LA) [49]55 VAN g I R (SFAS) WUl (i 32 itk B 24 i 1) 7 A Bl 1

W 7 AR AR A, R IR N SRR R FH 2 B A A o Th R ) B AR S . TE R
M T R R, Al A AR PR P R, R A E L R RR . L E R SRR S R (BCAAS) [33].
R S R A S e AU A R T PR oAb A B A I [50] 0 R G SIS IS IR AR K 1 B 5
(Slc1ab) R S B 1 (Gls1) AR IS TER F 4 7> A0 3G 0, 1 28 2 e e 1 6 0 BR 24 P 40 | Slclab %
IS TR A A RN T RE o EASE RS, A SBT3 AR T B TCA PEER I o — R
(-KG), #M 78 a-KG FALIY) — H H-0-KG (DM-a-KG) AT 1 B[R 75 S Bt e S5t 2K 17 52 #0 ] (4D -1 4 B T B [ 23]
KR MVE ok fF b T G LR, el 304 5 20 R Ak PR SR 0 Al o 0 T i, HORE B 2 35 4] RANKL
7310 NFATCL FaA AR B A0 AE i [51] . SCRERUEIR(BCAAS) (WISEZMR . iR . M ig) LR
B SRR R LRSI 1 (BCATL)TE AT M B i M s b B B Be VAR SRR o0 Js AR . 40 O
SR BCATL #UE BA At 5525 1001 v 200 LT ) 20 /N BP0 1 i 25 2K [52]
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Figure 2. How do different metabolic pathways affect the differentiation and function of osteoclasts (Created
with Biorender)
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