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Abstract

Radiation-induced oral mucositis is the most common and unavoidable complication in head and
neck radiotherapy. It not only causes oral pain and difficulty in eating for patients, but may even
interrupt radiotherapy. Clinically, radiation-induced oral mucositis is mostly treated symptomati-
cally with anti-inflammatory, analgesic and anti-infection methods, but effective prevention and
treatment strategies are still relatively few. At present, there are many new studies on the patho-
genic mechanism of radiation-induced oral mucositis, and further systematic sorting is still needed.
Comprehensive analysis indicates that excessive ionizing radiation can cause damage to normal
cells, mainly manifested as double-strand breaks in cell DNA, the release of a large amount of reac-
tive oxygen species, and related inflammatory factors. The continuous accumulation of irradiation
dose in the body and the difficulty in timely and accurate repair of damaged oral mucosal tissues
and cells jointly lead to the occurrence and development of radiation-induced oral mucositis. Dur-
ing this process, signaling pathways such as NF-kB and Wnt/B-catenin are highly activated. In addi-
tion, new research has found that the Keap1-Nrf 2 signaling pathway and the presence of senescent
cells can also affect the progression of radiation-induced oral mucositis. This article focuses on elab-
orating the mechanism of radiation damage and the related signaling pathways of radiation-in-
duced oral mucositis, which provides certain new ideas for the subsequent research on the patho-
genic mechanism and treatment plan of radiation-induced oral mucositis.
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1 Hl

TSP 1 58 98 (RIOM) 2 Sk ST R KB 38 78 U VR 9T (RT) ik R o e i DL L DU S ) 5 RE s A
SO PR WA, ERATRe R WOTSE, WABMEREFEM[L]. RIOM FEREE S
LA AR A T 1R 1) — b RIEPE . et DR AL, T AN R Z I B (2] TRATR
GiitoRHE R, 52 RT L3 (HNC) B, RIOM K5 K Eik 80%~90%, H:r 60%~70% 4 JE[3],
B 5 A ZYWHO) BRI /3IE 3~4 Z. RIOM KAERGERIN R FEFEYRETEAR . WM. 12085
Wi EUE DA RN 2 W 25 [3]. ™5 RIOM (i A AAE .. HAmmMZ!, Simgdte. &
WA PR M, BRI R DA S PRI T SR B3, B AR VR T IR B 1k, 3B v T B H ORI iR
HAIEFE(QOL) [4].  H AR b ATh JE I 56 A ik G i BUBUR VA TT 7R & T U R D R 8 ik 2R, X
LG S E (1) RIOM, XK ] RIOM 56 ¥ 2 MRS IRATE B 7. A0 RIOM BIGIREIL. e BEAE
PR U6 SRS S T TR, AR SR L L RIOM BAH (S 5l es . 3224 A7
1, VALHASH RIOM HJG 820 FE i it — 2 IS H M 1E
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2. RIOM #fik

HNC B3 & 8 BRI T 8N 2 Gyl R, 4L 5~7 i, Uk & RFFIE AL 60~70 Gy [5], %4 &
BRI B IN A 15~20 Gy B, HIRT LA G IR BE IR 28 (OM) R IL. #R4E RIOM [fi f K3tk Jig 1)
AN, R EXAr 2 A g T RIOM, 12 F 2GR RIS FLLBE . ZEA8 ATARAS R 1358977, Tt
o JE A 400, R AR . RT 5 SR HEIE OM & SEUEH LEIE R, &% 75 2l g
R, SEUREAEPE TRE6]. MAAEREBYT eG4 MR OISR IR K. BERA,
B¥8:3 AL, BAEM RIOM [7]. K2 8%1IH:5%% RT 16471 HCN B4 & & N2 OM, 3.8%
1 B FH RN (8] -

RIOM [y # A= B 2 i AR ] 2 M AN BE[9]: (L) A di s i e sl f— Uiy i A vh B a] i B[ 20],
HL 2SS 2R LAY DNA, SRR G 51 R T (2) RYEAMRE 7R . 322
Fe T E AR E R A KRR TR AR (B ROS AT RNS), 4% DNA {5, S8 M
LA L R At T [11], [N 2 A th S RO A A AR IR T, 5 G R PR BE IR T (TNF-
o)~ AN ZR-18 (IL-18) AT A4S -6 (IL-6)) %5 [12] . [FEIIN), DNA SEWTSY, 40 @B aosas, 3L
53 MIZIE - kB (NF-«B)te EZAEH[13]. (3) JEk Mk FERIEFH AL MMM, X
RS A S A R N S R, AR R R IERBHER, SECEZ HG[14]. (4) RAE(E
S FAIBOR: SRRy, IEPR AT B O A R R, BRI T 2 0 e BN, &
HEEPORIE[15]. 5) @A : —AE RT 4595 6~8 /A, T ERAMMANE LR L858 TR
ks AT DERRALUE S

V2R T RIOM KIS B, B 5 N7 DS R A R80T 2R, X1 RIOM AU
BIT MARIE IR, BATIGAR ECTEE RIOM M6 RIS D [16], 2 N5HRERTT, HIv k. B E
S SRR T B2 A s 11 s iR 2% (MASCC/ISOO) I PR S B A8 e, U 1 s B I A6 (R B 97 7 6 [17]
HEFF PR FE RGP I D AR BRIBURG YT & & ABg I [ ZR Tl RIOM, —SELb# M & (1) RIOM NI
FEME AR A A K R T &R TS 24i6YT, (EAMELLE AR RIOM. JEHERA T 5T [ A S T-41
A Bk BUR. PIRTRCEYEGYSE T THIT R T HITEE, B RFEA mT SEER I RIGTT 7 & .

3. FESHIR G HLH

(1) B EER AN DNA

RIOM 6T Hi By i EL 5 T AN B E[18], B8 T840 DNA #3455, #ARE i IRz &
WL DNA XUEE, # 221 SR P IE4EMAET-[19]. RT R d, B AR 2SR 2/ DNA 125 FE N R
25 P P8 200 A R B ) A A f BRI BE K, {H DNA [ 5 5 3455 2 M| 40 A e s R 2 ), 7 500 R0 7
B, AR KA RES SEATIT I 4HE50T2[20]. DNA XUEERIZERT, AN TR S 8iseE, Hr pb3 #H
AT Kb (NF-xB)fe 3 FEH . NF-xB A& —Fp{E 280 1 i FE R IR L K R, WU 5 &= K E
KU 7 bR 72, shrhis R BT WAL R 5[21] .

(2) | FBOGFEERERK

BUATE S A BRES N, 20 b (W b A A A B IR A S5 22 7= AR 1 B (S PR 4U(ROS), JRAE4H S 5-1%
Sy g G A AE M AR S R R A BRI [22] . AEAE AN RCR (i R T ROAE),
T 27 A E Y ROS, Jf5 DNA H s R FI B IR L [ R A2 [ i, S5 DNA 45012078, DNA
B XUEEWIRL[23], RIS R DNA 45, X2 A NRIERS 5 S 2L, g i) 3 22 )5 R [ 24] .
AL AN, fEFEST S ROS KE B LUK Er4:: DNA G E/E R, 404 p53/p21 CIP 1 {558
P51 pl6 INK 4a/Rb 17170 B £ B AH 4R IE [25], #F—20 5 34n i & 6=, 5 S 4l 2 [26], X i
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K A

FEL R S R A S 2 i R 2 — (271

(3) RIERFHIBEK

EHL AT, K& ROS MRS REARIEA S 54 Fi&% L, I ARBKERAER T, T8
HAnp s PERE 28], HAdF, TNF-a. IL-18. NF-x8 F1 1L-6, CH7IER 5485 5 AL Hn s Em oS, af
9% RT 1 ROS A SR pLE], 1 B2 REA I X 2 7= AR B8 2 1) ROS FEButH@Ren B Rz[3]. 4t
RN F(BLFE IL-10 A IL-11)7E OM Rk /KT HAIK[29], XINE T RIOM B IE /R M. 2 % R+
PO I 5 SR R P A A 353X 2 (0 45 2 2 ORI P R 45347, PR 2EL 2 R 8 b 3 5 I A B E T2 [30]

(4) By

HCN &35 1) RT A2, AW AR IS 2 th S AR M IR [31], 3 B A8 My 2 Pk | AT AR 4
W FESE INAE[32], XA AT s A 0 AR A7 B [33] . T L, 7ESKIE RT &AM 1~2 AN, 1E
HUE ST JOERT ROS /5 1) DNA G i it SL RER R, DB EZ 60k - AEE 2N L
S A BT E M AR T, TR R AR M I B R 0 R, o RHEAN A T B AR Sk, AT
BRI LTI . B B S AR o 2 A 11 s R RS o DA S MR P e S TR 2R, A iR R
5y 5% BN B S A I, T IR S SR AR 1 152 2% St — D I E AR A [3]

(5) HBETIRR

AR A0 R T 7 Ak B SR DA S T RE AN R], A AR R FE 40 M S 2 THREIN T 4l 0] 4325 CD4+F1 CD8+H K
SERE, i CDA+/CD8+HIELAR T LLR WK I S ORES , IEHORAS RN 1.4~2.0 [34], MRS HLAA S Thag
FasE, BRHCAAR KA. M RT J51H HNC 854 5 s 71 R s Jm il e e 7135 2 R I, Xk — B4
HE O R SORE 1T S R [35] -

4. RIOM X5 SEH®

(1) BAAEKET-p 5 NF-+B EHE

ALK T(TGR)-B SHUARHL TS EWARIEERER, 1M NF-xB A& 5 8 H 4t & 3
TEIRE S IEER[36] . HARIE, TGF-B 155 ML 15T 1) OM H i G4k, ATl 1 fi £ B3 A i
LR b S i aE BE 7, JFiE S HE T, Wi S B bR A AR RS 0 10 A IR [37] .
Smad 7 /& TGF-B # K IEIIE S 1& FHEPUR, A AT CABHET TGF-g /i S H4u M5, 38 REHIH] NF-xB i
b, X B SORE FIBUR[36]. AWFFE R Smad 7 ZAYIAIT OM, RELILAE BT i A 5 i 4m i
FIER . (Rdban i, s iE T, Fi W TGF-4 Al NF-xB 15 5455, X RIOM A — & B {E
H[38].

(2) ROS-FEHERIA

W FLEN IR I B RS (MTOR)E Sl B AN UAA . i KM R EITLTFEN, feisdafrHg
M E IR, %5 T IEER M I FEBOE 7T S S0 7 i Az 2 [39]. fEEALRIML & ROS 5 F1)
S FEZ AT, mTOR 135 8 B 5 7614 [40]. Iglesias 25 A [41]7E /) AR RS 7Y v 7 P o R LA Sk 1)
mTOR MHIFITRIAE R, KL LANHIFES F RO EE . FT%, B3 7/ RIOM )™ &
FEFE, Wik— B304 7 ROS W 53 b e WL A . mTOR #il57 CAE IR RS L, EAE
T VIRIT RS LI R, (A2 TGRS RS 7 mTOR I FIAH DM i 2 (MIAS) K A= %
2%~78%, HHEih 9%[ B E K AEE A OM [42]. Ik, JET mTOR #2500 K RIOM [T W0 A 1
RN T .

(3) Wnt/g-catenin 15 5@ &%

TERALIT S 10 OM 1, AL JE A GL/S K £ s Al DNA 4545 % b (DDR) & B vtk 585 1 je 14
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JHh g T AR L (PUMA) ) pb3 _EiR[43]. AHFFLR I, dlid % 1% PUMA W REHOR 803 T Wnt/g-
catenin 15 S, ] LAIG5ESZ 40 1 5 B ¥ 40 M 14 G RE D ANAHL AT AE BE ), X R IH Wint {3 5 4% S0 75 mT
YEA RIOM HI1GIT 842 —[44]. Zhao J %5 \[45]% 8 R-Spondin 1 (RSpo 1)4= & F 24 J5 vl B30T /N i
PR R A 2 (1) 22 8 Wint/g-catenin {5 546, — @R LATBiia /N RIOM.

(4) Keap 1-NF-E2 #HREF 2 5 5@ E

NF-E2 A5G 2 (Nrf 2)mia 5 T b Bt 72, e AT WL sh B A 7RI 28 40 IR 7 B (R 3R 0k
[P E SR T, 1 Keap 1 (ECH #H9GEE 1 1)-Nrf 2 R 52 N ARHCAR & MIF P ) 80 PR3 77 16 32 AR 3 1A
T #5[46]. Wakamori Shun 7 I BA[A7T%F Nrf 2 @B (14 /N BRgEAT SR 30 X I B o y S 44w, 71 & 8 20 Gy,
T EZE 8 K, /NRAES G & L AR E T, EEI 14 KAE Nrf 2 @5/ R REK R 1EH 10E I
PRy, XK Nrf2 X T4 e & Sk i) B AR R TR M. HE, K/ Keap 1 @& ] LABGE Nrf
2 YT Bz, #E RIOM R4, IX %W Keapl-Nrf2 15 5@ B4 1758 RIOM [ IEHE 5 .

(5) h&

CEEYMT RN, BRSNS B DNA #5105 /% ROS [f KSR . DNA #i45EZ L
DNA XU ZE N T, RAEIER . MBS 2 oA s Fii TGF-. NF-kB LA J p53 55 5 m g, JL[F
VPN T, T S NF-KB @S 5, R sE A I, BROKE SOE R T (TNF-a IL-18. 1L-6
) SR T, SR AN BARAD bR B R AR AE T, I E F AR . ROS (K BRI
% p53/p21 CIP 1. mTOR 15 5@ A1 p16 INK 4a/Rb 1458 4%, 754000 s . gipss, w4 M4
J iy SRR 2 TE R E R T ROS BRI

5. RIOM 54pax=E

LA A 2 (R 35 2 I LR 2 (AR A 5 1) DNA B35 %5) BITids 5 (1) — Fh 4 i 7k 2 J 3 4 3
[48]IRFS, EZMMAFINGE . /b, HE5W—RIFMERABE T BWEFELME S5 T(5RR
NEEZAHR T WAR AL (SASP) [49]), FExT & [l fid Bt i = A= T 5, anifs S IR AfsE 2 . Sandy [50]4&
T A B AR A I R N RN e . ANMIE . ANYE T DL R A I Al BB T

Wang Huilan 25 A\ [51]%0 4 T GSE103412 ¥4l 4E[52]7, i WEARBEIR N i B8 (RT IR LA K RT 2
Ji ) RUGT I 2 (fi e A BEANTBUHG YT BT ) AR R A 2= 5, S5 7R RIOM & o 2 4 b ic )
CDKN2A (p16)F TP53 ik i, IL-15. IL-6 ZF SASP [RIE A AT L. thah, iZE SR /N RIOM
S BB HEAT T A B T4, IEW T RIOM hEEE AN AITEAE, LLK SASP HIERIA.

6. B

RIOM & HHBURTT VS IR D s A0, RwZm, BRA — M B RME, (HERRK
AR R, BEAE TR, EE0EEE, BREEERAR, EESPE RT &, LI IX T
T ST RAMN 215 IR A AT T, 50 1E R A0 = AR A B2, 38 ROE R AR DNA Wi, K& ROS
PAR S REDR P HIRE L, X e T RIOM. HiTEZIUEH T RIOM H NF-«B {558 #. Wnt/g-catenin /55
BSOS, EEMRNAALE, WA RN mTOR 15 5@ [41] 7] Jkiz /N RIOM /™ E 2R
7E/NBR, RIOM [SZEG R iR R L T Keap 1-Nrf 2 {5 5@ B AAFAE, B AT LB EGE Nrf 2 SREHR
RIOM. RV Z G PR AT PRI 74T T KB B TRBI ATG YT RIOM A 5G54, HEA B — I AE0aRTT
77 FAe A IGE RIOM IR PRAH SRR IR B 1E e

M, BABETHFETIRAM T RIOM MEUREHLE], WA, 5 FRTPFERRIRE, KIRHZERE
FIEMEER . HE, WHfH RIOM M S5 @S WA MM, 2 T2 IAR RIOM FECR L,
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