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Abstract

With the global growth in demand for new energy sources, induced seismic events triggered by in-
dustrial activities such as hydraulic fracturing have significantly increased. This study employs the
discrete element method to investigate the effects of three primary fracturing parameters—frac-
turing fluid injection rate (represented by the pressurization rate), in-situ stress (represented by
effective normal stress), and fracturing fluid viscosity—on the dynamic instability and slip of frac-
tures. Results indicate: 1) Increasing the pressurization rate of fracturing fluid accelerates the tran-
sition of fractures from stable creep to viscous slip; 2) Elevating effective normal stress raises the
critical shear stress required for fracture slip, thereby enhancing stability; 3) Changes in fracturing
fluid viscosity have a limited impact on the critical conditions for fracture instability activation.
However, high-viscosity fluids exacerbate slip magnitude and instability by restricting fluid diffu-
sion and increasing local pore pressure. This research provides theoretical guidance for mitigating
induced seismicity risks in oil and gas resource development.
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Figure 1. Schematic diagram of the model
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Table 1. Simulation scheme design
= 1 AR

Y o1 (MPa) o3 (MPa) P (MPa) oeff (MPa) IP (Mpa/s) 1 (Pass)
S-1 11 6 1 10 0.005 0.001
S-2 21 11 1 20 0.005 0.001
S-3 27 16 1 26 0.005 0.001
W-1 21 11 1 20 0.04 0.001
T-1 11 6 1 10 0.005 0.01

22. R H
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Table 2. Physical and mechanical parameters of materials
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Figure 2. Evolution law diagram of fault slip stress-displacement
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