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Abstract

Offshore wind turbines are constantly subjected to external lateral loads such as wind, waves, and
currents from the marine environment during operation. These loads are transferred to the tur-
bine’s foundation structure, posing a threat to its structural safety and stability. This paper uses the
FssiCAS numerical calculation model developed domestically by a domestic research team as a
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platform to analyze the lateral bearing performance of offshore wind turbine jacket foundations.
First, simulations are conducted to verify previous single-pile field tests, ensuring the accuracy and
reliability of FssiCAS for analysis in this direction. Based on this, and according to a project from a
certain design institute, a simplified jacket model is realistically restored at a 1:1 scale according to
the drawings provided by East China Survey and Design Institute. Then, relying on the FssiCAS nu-
merical calculation model, the bearing capacity characteristics of the offshore jacket foundation un-
der lateral loads are studied, with a detailed analysis of the effects of pore water and seabed soil on
the lateral bearing capacity of the foundation.
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g B XAUAR LE T Fl XL, ARG N R AR5 55, DRI A 52 0 g 30 B K TRl st XL, g |
AMUAE TAE LR o b R 284 P R 52 PR B A 23 8 8 R AR 25 A 5 4, Xk R g B XUHILI R At 5
FIRR T 75 Az BRI AISS R B AL, IR ER S R E R BRI A YR RESE 1] A0 A #
PERTADETL, W E RIS F o A v R B 22 (1 22 4 Wl RO BRI S5 MR BN 2 . HO S e 0k
it XA G 65 440 52 1 A9 4/ A0 ) 00T 225 W) 22 A A PR R 52 I 78 KT e ) e 4, A Rt ifg b UL
P e DRI X0 i b RT3 5 STt F 0 1] A 2 PR B 2 AT T A5 U R B L, B G T XU
TREMETE. ettt

AT, ENAMCT 8 QR AR B A e b, F R AL N =Rk BRI
BB AT FBUE ik o BUE IR B T AL — BRI RS, BATRER A A
R VSR HO R 5 T S i, T O SN [ AR ) A R B B TR . Ye [1]-
[5]1F 2012 FFFR T — Al SEEE AR - 540 - M IRAE BAE R & BB A, 2R & U R s
PIANFRTY 730 —4ERAS FSSI-CAS 2D MI=4EffAS FSSI-CAS 3D, Ja KX M MARE &8 —MEFF,
B FssiCAS. £t Ye MHFINZER LR 5563, FssiCAS 1Rl LRSI I it 24t
SEVEVAN R 2 N, A2 BB b R ER - G5 - PR AR AR RSO e B R 2 —

FssiCAS ¥ it S G R AT Se bk O 2t Ye 34T 7 — R5IHXT ELIGE[1]. FERH T b i
[6]. Tsai 5B F[7]. Lu FFRE— R 5= NBIRKRENA[8]. Mostafa S5 & (% & & Pk b2
(AR89 F0 Mizutani Z5XF T /K R B 32 (AR B0 [10] 28 A AT R RIS 2%, SR )5 5 H FssiCAS £ fE X
BTS2y Sy B 4 AT X L, I FssiCAS HUEAR B 1) vl 5 45 SRR I8 B0 5 i i) — Bk, &
B FssiCAS TEURIR — IR - S5 R AH LA FH v @07 Th B A 2 88 AR e A m] S

2. AIEEMIE

Li Z5[11)/E 5 /R 2 AR FIMR T PE RS 25 24 B Blessington Co. Wicklow f1%5 i3 &5 B 5 46 /N ]~ B
WEEAT 7 — R A B M F i BN EGREE, iZ3h O 2 B T HEalet 70, B st R 5 B AR R
b 5 X7 I E A R SR AL, RN . RGN 30K, MR 340 =K. BEJE 14 =K
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Figure 1. Model mesh diagram
1. HEBWEREE

PR AR, BAR9 20D, Bl 6.8m, &N Sm, FEN#HEEAZELE, Eoh=E, 82
RIS A RS 50S J12 . RFH Mohr-Coulomb 3 3 A KRR HEAT F4E . B bk DU 422 8 Ji
RIGATE— LB A NE, RS AR, IR LR BRSO LRI 2. i EBAUR AN
TR SE P AL IR, LIRS 0K 93,633, AR AR 26 A B B R HARAMNEIL Tt x Ay 7 RIS AT

IR, YRR AR BT A 77 13 AR (BRI Xy y 2 T3 FIRIALAR)

Table 1. Parameters of steel pipe piles used in Li’s model test
F L Li iR M ENE S 3

HEAZ/m EEJE/m HRER/m PR /P THRALL
0.34 2.2 0.3
Table 2. Soil layer parameters for Li’s model test
F2 LB TESH
TREmY +JZE S Im Pk R /P THIA L K28 71/Pa W EEE ()
1 0~1 26.5e6 0.2 1000 55.5
2 1~2 39.8e6 0.2 1000 525
3 2~3 45e6 0.2 1000 495
4 3~35 47e6 0.2 1000 47.3
5 3.5~5 50e6 0.2 1000 422

£ FssiCAS HE TSR b @ AAE AL RO RS, BB I AR SROIA A 5%t 2 Ja Bl ge 2t 17 4

ST

HEBE G YIMRES, PN, SRR RGN E Sy, N B E Oy 9.806 m/is?; e
FEHTEI 0.4 m (FIAEMIEEDN O kKN~110 kN FUZKP AT 3, S8 AR 32 R BT 151 2 Jom 1 =4
) ff BN A A 110 KN I, HEERIRAE Xy y z ZANTT [ AIALRS 2 BAIRE A A AR . T DA 3
Wt 0 1 i 28 AN BT K, B B AR e ATE A B0 — e s AT 5 TRV BRI % » 7T WLAZATE g M P
SIS E SRR T AR R AR, AN B IR RIS B S R T AR AR B T Ry A A
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Figure 2. Displacement cloud diagram of the pile-soil model in the x, y, and z directions
2. HEEE X, y. z FEKNLBEE

X (m)

Hi FssiCAS BUEA AL T R IAE UK P02 82 - fif gt 2 5l g 2 R b, nls] 3 pas, ATBLA A5 R
HARIFH—2rk. FrS APLETER p-y BIZit 545 RULLAT AN FLAC3D Bt S8 RAERT L,
FTLAE ) API p-y BHZGKE Y TR AR KF-OL A2 AR BT SEDUME /s TAH EE FLAC3D $ifFdk T H BRZE 70
Jiik, FssiCAS IR AT BR 7T U5 2 W R SR BAT B e O TH SRS BE AT SRR, RIS oS54 R (Al
FHABETHIE .

3. g LK S EREMN @ADL SRR

AFTR A BUE TSR FssiCAS, %R FUSE KNIl 2 ST A AR, RLIBUHAE MU 15 1 38T PR A 38
R, IR EAERS A BN AR B AT — RIS BT TT, TR sk b e b XU TR 22 AN
SEMER NS ENE.
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Figure 3. Load-displacement comparison chart
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Figure 4. Annotations of each steel pipe in the conduit rack

foundation

B 4. SEREMZNETL

Table 3. Steel pipe parameters of each part of the conduit frame

* 3 FERSHUINESH
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Q@06 B @G

AN

W5 EER WE S HA%R/m
WEO 2.7 WEO 0.9
MED 1.29 WEW 0.71
WES 1.3 QD 0.73
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S
WED 1.25 W) 0.71
WEG 1.3 WE®B 0.63
WEOG 1.25 WiEW 0.65
D 0.9 i AS) 0.63
WE® 0.93

R U 5 5 step #5320, FE 5N HyperMesh S 3E1T RS KI5, SR AERIIE TR 2%, W%
TR A VU AR PR . S SRR A% R 15 B 0.2 mm, HUZEMRS RS E A 1 mm, S48 5L ass
M - LR S 80 2,924,775, T SAHCK 529,216,

3.2. FiGRBE KRB ESHRE

TEA T ITHE AR BUBE R — PEAG SR M A IS R SRRSO IR AR 1 12547 o IR SE B bR — 2k
FERY, AFE T 4 FhaBEEHEN: Mohr-Coulomb #EI]. Mises #EN. Tresca iU A1 Drucker-Prager #EN, ¥
Drucker-Prager H U (LA f&i#K D-P NN E TR FE  BA B i rddiesitt,  HAEH FEER /KK J10F L AR
L RS BRI, PRI IE B D-P #EI .

TEMEAR IR S, W7 B e i AR E S5 %00 A+ TR A =550 5, A=
R AR S HU IR BN 5 BvR . BB ERE AR U BN SIS, MRS H Sk 4 FIEE 5.

Table 4. Material parameters of various parts of turbine jacket foundation

* 4. FEREMBBUAMRSH

45t FRPEA (55 2%) GPa % P (S5 kg/m?3 HEL /N =

P 3 x 10t 7850 0.3

e 2 x 101 7850 0.3
FERHE 1x 101 2904.65 0.3
WED-© 5.7 x 10%° 1059.56 0.3
HWED-05) 7 x 100 1801.12 0.3
FUE(EH) 2 x 101 7850 0.3
FAE(E |) 4.4 x 1010 901.95 0.3

Table 5. Seabed foundation material parameters

F 5. BRMEMRSH

YL E (Pa) WS4 () K5 1 ¢ (kPa) MEL YN Y] BIEZ K (m/s) L e
8 x 107 25 12 0.33 0.00001 0.65

33 BAFHHRE

1 FssiCAS B 3\ HyperMesh |73 4 1 W% SO, i B XL S8 ZEIEROARITERRE, To G B
PRST , DUOABUE TR oL SRR T00, A5 ALK IIRE, P LA AR L B B SRR 508 0, K
LR RIAE Xy~ z T e RS, MR e A IAE Xy y J7 [ B E AL o A& s = B lA] 6 .
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Figure 5. Grid diagram
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3.4. MEMEBYERMSERI

TEMG b AN 5485 AL RN ) 7 30 R RSB bbbl o R =20 . BTWE R waaik
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Figure 6. Time history of force
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Figure 7. Distribution of lateral displacement in conductor rack foundations
and seabed soil
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Figure 8. Load-displacement curve
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Figure 9. Hydrodynamic boundary
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Figure 10. Comparison of lateral load-displacement curves of the jacket
foundation for operating conditions 1 and 2
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Table 6. Comparison of seabed soil material parameters under two working conditions
= 6. MM LA THYE R TS HTEE

T oYt LA B (KPa) MEL/NEA WEE () TARBER J1(kPa)  EEE (KN/md)
1 S EAvY i 80,000 0.33 25 12 16.8
2 ViRt 17,500 0.3 34.77 6.57 19
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Figure 11. Comparison of lateral load-displacement curves of the jacket
foundation for operating conditions 2 and 3
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