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Abstract

To investigate the influence of the maximum aggregate size (MAS) of lightweight aggregate on the
compressive strength and size effect of cube specimens, this paper treats lightweight aggregate con-
crete (LWAC) as a three-phase composite material consisting of mortar, lightweight aggregate, and
the interfacial transition zone (ITZ). Meso-scale aggregate models of LWAC with side lengths of 100
mm, 150 mm, 200 mm, and 300 mm were established, respectively. Numerical simulations were con-
ducted to study the uniaxial compressive strength of concrete with different specimen sizes and dif-
ferent maximum lightweight aggregate sizes, and their impact on the size effect was analyzed. The
results show that when the MAS is within the range of 13 mm to 20 mm, the compressive strength
generally increases with increasing particle size, typically peaking around 20 mm. When the MAS
exceeds 20 mm, the compressive strength begins to exhibit a gradual declining trend. Additionally,
BaZant’s size effect law fits the observed strength-size trend well, and a larger MAS reduces the size
effect.
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Figure 1. Uniform mesh generation
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Figure 2. Delaunay triangular mesh

& 2. Delaunay = fa &34

WA 23 I RST RN e B oo B8 . THRORS B SRR S . i IS B RS RSTR0N, 43 ) 9
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Figure 4. Stress-strain curves with different ITZ thicknesses
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Table 1. Number of elements and nodes for different mesh sizes

* 1 NEIMESIS R R T 28

T
5000

Wt RS REpEt ¢ T
1mm 29,112 57,697
2 mm 12,095 23,925
3mm 8436 16,695
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M2 IR S AR A, FESMar BRI T IR LRI T - AR i 28 2 B AR R A (KR AL,
FE AR NGRS Tl . AR SOR SR 2 3 i D A A R [27 R Sl i LR Bt - (1 5

DOI: 10.12677/hjce.2026.151017 147

AR


https://doi.org/10.12677/hjce.2026.151017

1

Z

ik 5

PHEAR IR -

WRIGZ 96 8 AASCHR 28], ASCREUIM B S BMA SNk 2. 4% 3 k.

Table 2. Material parameters

F2. mREH

ZH P58 E/MPa PUhr i EE/MPa FPER E/MPa HEL /=
AR 16.6 1.66 14,000 0.22
fib3 46.8 3.88 24,000 0.2
FEIH 22.0 2.20 10,000 0.2
Table 3. Constitutive curve shape parameters
3. AHaBH
ZH b AR Frm
B 0.8 0.85 0.9
0.35 0.4 0.35
a 0.2 0.2 0.2
A 0.5 0.45 0.5
e 3 3 3
T 2 3 2
Sir e 10 10 10

2.3. AMBUERR AYIEE

AR YA (1 56 U SR FH AT R F 24 100 mm x 100 mm (R, JRIEE = Z0AN R A BE LK 50 730 4 7
P I A B R, = RBE RN A 45 R LK SR B [28] iR EE LA 4

Table 4. Peak stress of lightweight aggregate concrete specimens
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Figure 5. Dimensionless stress-strain curves under uniaxial compression
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Figure 6. Failure process diagram
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Figure 7. The variation pattern of compressive strength in lightweight ag-
gregate concrete with different maximum aggregate sizes
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Figure 8. The variation patterns of compressive strength of lightweight ag-
gregate concrete with different structural dimensions.
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Figure 9. Degree of size effect in lightweight aggregate concrete under
different maximum aggregate sizes
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Figure 10. Fitted curve for the size effect on compressive strength of lightweight
aggregate concrete
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