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Abstract

To study the influence of dry-wet cycles on the dynamic mechanical properties of schist layers. Us-
ing the separated Hopkinson pressure bar, dynamic impact compression tests were conducted on
schist samples that had undergone different numbers of dry-wet cycles. The dynamic mechanical
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characteristics and fracture features of schist samples with different bedding angles under varying
degrees of dry-wet cycling were investigated. The results show that during the transient loading
process, the stress-strain curve of the schist exhibits multiple significant stages: compaction stage,
linear elastic stage, strain hardening stage, strain softening stage, and rapid unloading stage. When
the bedding angle is 0° or 90°, the specimens exhibit higher dynamic compressive strength values,
and the formed rock fragments are relatively larger in size after failure. In specimens with bedding
angles of 30°, 45°, and 60°, the compressive strength shows a downward trend, accompanied by a
higher degree of fragmentation. The failure forms of the specimens mainly include Splitting failure
along the bedding plane at 0° inclination, shear failure along the bedding plane at 30°, 45°, and 60°,
and a certain degree of local compressive-shear failure at 90° inclination.
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Figure 1. Including samples of different layered dip-angle schist
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Figure 2. Rock sample dry and wet cycle process
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Figure 3. Flowchart of wet and dry cycle test
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Figure 5. Typical stress balance diagram
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Figure 6. Stress-strain curves of schist with different bedding angles under dry-wet cycling
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Figure 7. Relationship between the dynamic compressive strength of schist and the number of dry and wet cycles
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Table 1. Values of dynamic compressive strength and deterioration degree of schist under different dry-wet cycles

# 1. FRTERPREIER TRENSHERBERSHERE

TR o 30 45
PHEO  mmprMpa)  S/%  ASJ%  GBEE(MPa)  Su%  ASW%  GEEEMPa)  Su%  ASW%
0 133.89 - - 60.29 - - 47220 - -
5 10955 1818 1818 46,6 2269 2269 40.46 1429 14.29
10 10348 2271 453 3831 3645 1376 33.75 2850 1421
15 10216 2370  0.98 3403 4357 701 21.44 5458 26.08
TARIESH 60° 90’
UH(m) 4 (MPa) Su/% AS\% 9 i (MPa)
0 108.37 - - 12833
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Figure 8. Relationship between dynamic compressive strength of schist and bedding dip angle
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Table 2. Calculation results of schist energy under different dry-wet cycles
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Figure 9. The relationship between the number of dry and wet cycles and the energy of schist
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Figure 10. The relationship between bedding dip angle and energy change
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Table 3. Dynamic failure patterns of schist with different bedding angles
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