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摘  要 

冻土地区公路路基常面临冻胀融沉病害，导致路面开裂、沉降、翻浆等问题，严重影响通行安全与使用

寿命。为揭示冻胀融沉内在机理并提出针对性防控技术，本文通过理论分析、室内试验与现场监测相结

合的方法开展系统研究。首先明确冻土的物理力学特性及冻融循环对路基土体的影响；深入分析冻胀(水
分迁移–冰晶体生长–土体膨胀)与融沉(冰层融化–结构破坏–承载力下降)的核心机理及关键影响因

素(土质、含冰量、温度变化、地下水)；设计3组不同参数的路基土试件(粉质黏土、含砂黏土、砂砾土)
进行冻融循环试验，测试力学性能退化规律；最后提出“源头控制–过程调节–工程加固”的三级防控

体系，并结合青藏公路某路段工程案例验证措施有效性。研究表明：粉质黏土路基冻胀率达12.3%，融

沉系数为0.085，是最易发生病害的土质；采用“换填非冻胀土 + 土工格栅加固 + 保温板防护”复合

措施后，路基冻胀量控制在5 mm以内，融沉量≤8 mm，满足规范要求。本文成果可为冻土地区公路路

基设计、施工及病害治理提供理论支撑与工程参考。 
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Abstract 
Highway subgrades in permafrost regions are often plagued by frost heave and thaw settlement 
diseases, leading to problems such as pavement cracking, settlement, and mud pumping, which se-
riously affect traffic safety and service life. To reveal the intrinsic mechanism of frost heave and 
thaw settlement and propose targeted prevention and control technologies, this study conducts a 
systematic research using a combination of theoretical analysis, laboratory tests, and on-site mon-
itoring. Firstly, the physical and mechanical properties of permafrost and the impact of freeze-thaw 
cycles on subgrade soil are clarified; the core mechanisms of frost heave (moisture migration - ice 
crystal growth - soil expansion) and thaw settlement (ice layer melting - structural damage - bearing 
capacity reduction) as well as key influencing factors (soil type, ice content, temperature change, 
groundwater) are analyzed in depth. Three groups of subgrade soil specimens with different pa-
rameters (silty clay, sandy clay, gravel soil) are designed for freeze-thaw cycle tests to study the 
degradation law of mechanical properties. Finally, a three-level prevention and control system of 
“source control - process regulation - engineering reinforcement” is proposed, and the effectiveness 
of the measures is verified through an engineering case of a section of the Qinghai-Tibet Highway. 
The results show that the silty clay subgrade has a frost heave rate of 12.3% and a thaw settlement 
coefficient of 0.085, making it the most disease-prone soil type. After adopting the composite 
measures of “replacement with non-frost-heaving soil + geogrid reinforcement + insulation board 
protection”, the frost heave of the subgrade is controlled within 5 mm, and the thaw settlement is 
≤8 mm, which meets the specification requirements. The results of this study can provide theoreti-
cal support and engineering reference for the design, construction, and disease treatment of high-
way subgrades in permafrost regions. 
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1. 引言 

1.1. 研究背景与意义 

我国冻土分布广泛，总面积约占国土面积的 21.5%，主要集中在青藏高原、东北大小兴安岭及西北高

海拔地区[1]。冻土作为一种特殊土体，其物理力学性质随温度变化呈现显著的非线性特征——冬季冻结

时体积膨胀(冻胀)，夏季融化时体积收缩(融沉)，这种反复的冻融循环会导致公路路基产生开裂、沉降、

翻浆、边坡滑塌等病害[2]。据统计，青藏公路冻土路段年均病害发生率达 35%，维修成本较普通路段高

出 2~3 倍；东北季节冻土地区公路因冻胀融沉导致的路面破损率超 40%，严重影响区域交通通行效率与

安全[3]。 
传统路基设计多采用“被动适应”模式，缺乏对冻胀融沉机理的深入认知，防控措施针对性不足。

因此，开展冻土地区公路路基冻胀融沉机理及防控措施研究，明确病害发生的核心诱因，研发经济有效

的防控技术，对提升冻土地区公路建设质量、降低运维成本具有重要理论价值与工程意义。 
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1.2. 国内外研究现状 

国外对冻土路基的研究起步较早：俄罗斯学者 Zaretsky 等[4]通过长期监测提出了冻土路基冻胀量预

测模型，考虑了含冰量与温度梯度的影响；加拿大工程研究院(EIC)研发了“保温–排水”复合防控体系，

在北极冻土公路中得到广泛应用[5]。国内研究方面，程国栋院士[6]提出了冻土路基“冷却地基”理论，

为青藏铁路建设提供了核心技术支撑；马巍等[7]研究了不同改良剂对冻土力学性能的影响，但缺乏多因

素耦合作用下的机理分析；张鲁新等[8]开展了青藏公路冻土路基病害治理试验，但防控措施的长期有效

性有待验证。 
综上，现有研究存在三大不足：冻胀融沉机理研究多聚焦单一因素，缺乏土质、水分、温度、荷载耦

合作用的系统分析；新型防控材料(如生态改良剂、高性能保温材料)的应用研究不足；防控措施的针对性

与经济性平衡问题尚未有效解决。 

1.3. 研究内容与技术路线 

本文主要研究内容：冻土的物理力学特性及冻融循环影响规律；冻胀融沉核心机理及关键影响因素；

基于试验的路基土力学性能退化分析；多级防控技术体系构建与工程验证。技术路线：理论分析→室内

试验→机理揭示→措施研发→工程验证→优化完善。 

2. 冻土的物理力学特性 

2.1. 冻土的分类与组成 

2.1.1. 分类标准 
根据《公路路基设计规范》[9]，冻土按冻结持续时间分为：季节冻土(冻结时间<1 年)、多年冻土(冻

结时间≥3 年)；按含冰量分为：少冰冻土(含冰量<10%)、多冰冻土(10%≤含冰量<30%)、富冰冻土(30%≤含
冰量<60%)、饱冰冻土(含冰量≥60%)。 

2.1.2. 物质组成 
冻土由土颗粒、冰、未冻水及气体四相组成，其特殊之处在于“冰–水”相变的可逆性。土颗粒为

骨架，冰与未冻水填充孔隙，气体则以封闭或连通状态存在。含冰量与未冻水含量的比例随温度变化动

态调整，是影响冻土力学性能的核心因素。 

2.2. 关键物理力学指标 

2.2.1. 物理指标 
天然含水率 ω：冻土地区路基土天然含水率多在 15%~35%之间，超过塑限含水率时易发生显著冻胀； 
含冰量θi：定义为冰的质量与干土质量的比值，是影响冻胀量的关键参数，富冰冻土θi可达40%~50%； 
冻胀率 η：冻结过程中土体体积增量与初始体积的比值，反映冻胀程度，规范要求路基允许冻胀率≤5%； 
融沉系数 δ：融化后土体沉降量与初始高度的比值，是评价融沉风险的核心指标，δ > 0.05 时为强融

沉土。 

2.2.2. 力学指标 
冻土的力学性能具有显著的温度依赖性： 
抗压强度 σc：−10℃时，粉质黏土冻土抗压强度可达 3~5 MPa，随温度升高(接近 0℃)急剧下降至

0.5~1 MPa； 
抗剪强度 τf：黏聚力 c 与内摩擦角 φ随温度升高而减小，−5℃时 c = 30~50 kPa，φ = 25˚~35˚，0℃时
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c 降至 10~20 kPa，φ降至 15˚~20˚； 
弹性模量 E：−10℃时 E = 100~200 MPa，0℃时 E = 20~50 MPa，冻融循环后弹性模量进一步退化

30%~50%。 

3. 冻土路基冻胀融沉机理分析 

3.1. 冻胀机理 

冻土路基冻胀是“水分迁移–冰晶体生长–土体膨胀”的协同作用过程，分为三个阶段。 

3.1.1. 初始冻结阶段(温度>−3℃) 
路基表层土体首先冻结，孔隙水形成薄冰层，此时水分迁移较弱，冻胀量较小(占总冻胀量的

10%~15%)。土体颗粒间的结合水未发生相变，土体体积变化以热胀冷缩为主。 

3.1.2. 快速冻胀阶段(−3℃≤温度≤−8℃) 
温度梯度形成后，路基下部未冻区的自由水在毛细作用与渗透压驱动下向冻结区迁移，在土颗粒间

隙形成冰晶体(如冰透镜体、冰夹层) [10]。冰晶体的生长导致土体颗粒被推挤分离，土体体积显著膨胀，

此阶段冻胀量占总冻胀量的 60%~70%。粉质黏土因颗粒细小、孔隙率高，水分迁移能力强，冻胀现象最

为显著。 

3.1.3. 稳定冻胀阶段(温度<−8℃) 
冻结区扩展至路基深部，未冻水含量大幅减少，水分迁移速率降低，冰晶体生长趋于稳定，冻胀量

增速放缓，最终趋于稳定(占总冻胀量的 15%~25%)。 

3.2. 融沉机理 

融沉是冻结土体融化后，因结构破坏、强度下降导致的路基沉降，核心过程如下。 

3.2.1. 冰层融化阶段 
夏季气温升高，路基冻土中的冰晶体逐步融化，固态冰转化为液态水，土体孔隙率急剧增大(融化后

孔隙率较冻结时增加 20%~30%)。 

3.2.2. 土体结构破坏阶段 
冻结过程中形成的冰晶体对土颗粒骨架具有支撑作用，融化后支撑力消失，土颗粒在自重与行车荷

载作用下重新排列、压实，导致土体结构松散，承载力显著下降(融沉后抗压强度仅为冻结时的 10%~20%)。 

3.2.3. 沉降稳定阶段 
随着水分蒸发与土体固结，路基沉降逐渐趋于稳定，但强融沉土路基的最终沉降量可达 10~20 mm，

远超规范允许值(≤5 mm)。 

3.3. 关键影响因素 

3.3.1. 土质因素 
颗粒级配：粉质黏土(黏粒含量 10%~30%)冻胀融沉最为严重，砂砾土(砾石含量>50%)因孔隙大、水

分迁移困难，冻胀融沉风险最低； 
塑性指数：塑性指数 Ip > 15 的黏性土，吸附水能力强，冻胀率显著高于 Ip < 10 的土类。 

3.3.2. 水分因素 
地下水埋深：地下水埋深<2 m 时，水分易通过毛细作用补给路基，冻胀量较埋深>5 m 时增加 80%
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以上； 
天然含水率：含水率超过塑限 20%时，冻胀率呈指数增长。 

3.3.3. 温度因素 
冻结深度：冻结深度>1.5 m 时，路基深部冻土参与冻融循环，融沉风险显著提升； 
冻融循环次数：每增加 1 次冻融循环，路基土抗压强度下降 5%~10%，5 次循环后强度退化趋于稳

定。 

3.3.4. 荷载因素 
行车荷载：重载车辆(轴载>100 kN)会加速融化土体的固结沉降，使融沉量增加 30%~40%； 
路基高度：路基高度<1.0 m 时，受地表温度变化影响显著，冻胀融沉病害更严重。 

3.4. 考虑冻融循环损伤的冻胀融沉耦合预测模型 

为量化冻融循环对路基长期变形的影响，本文在经典冻胀模型(如 Harlan 模型)和融沉经验公式基础

上，引入土质衰减系数(α)，以表征反复冻融造成的土体结构不可逆损伤。 

3.4.1. 模型构建基础 
经典一维冻胀量( fH∆ )预测多基于水分迁移理论： ( ), , df iH T T z

β

θ
θ∆ = ∇∫ 其中，β为与含冰量(θi)、

温度(T)、温度梯度( T∇ )相关的冻胀函数。融沉量(ΔHt)则常表示为冻胀量的函数与融化压缩系数(am)的乘

积。然而，这些模型未充分考虑冻融循环次数(N)导致的土体力学参数(如弹性模量 E、强度 σ)退化对变形

的反馈影响。 

3.4.2. 引入土质衰减系数的修正模型 
基于本文室内试验数据(第四章节)，发现不同土类的力学性能退化规律可统一用指数衰减函数描述。

定义土质衰减系数 ( )Nα 为： ( ) ( )max1 1 e kNNα η −∗= − − 其中： maxη ：为该土类在无限次冻融循环后的最大

强度退化率(通过试验数据拟合获取，介于 0~1 之间)。k：为衰减速率参数，反映土体对冻融循环的敏感

程度。N：冻融循环次数[11]。 

3.4.3. 耦合冻融损伤的沉降预测公式 
综合考虑冻胀、融沉及循环损伤，提出路基总沉降量(Stotal)预测公式： 

( ) ( )( ) ( )total 0 01 ln 1f mS N H N a Nλ α     ∗= ∆ ∗ + ∗ + 式中： 
• 0fH∆ ：首次冻融循环的冻胀量(可通过现场监测或简化公式计算)。 
• λ：冻胀发展系数，与土质和水分补给条件相关(通过试验数据回归)。 
• 0ma ：初始融化压缩系数(可通过试验获取)。 
• ( )Nα ：如上定义的土质衰减系数。 

该公式的物理意义在于：前半部分 ( )( )0 1 ln 1fH Nλ∆ ∗ + ∗ +  描述了因水分重分布和冰晶生长，冻胀

量随循环次数增加而缓慢累积(对数增长)；后半部分 ( )0ma Nα  则刻画了因土体结构损伤( ( )Nα 减小)，
相同冻胀量所能引发的融沉变形被显著放大。 

3.4.4. 模型参数拟合与验证 
利用本文的试验数据(见表 1) (T-1，T-2，T-3 三种土，N = 0, 3, 5, 10 次循环)，对上述模型的关键参

数进行拟合： 
拟合结果示例： 
粉质黏土(T-1)：ηmax ≈ 0.80，k ≈ 0.25，λ ≈ 0.12。表明其衰减快，对冻融循环极为敏感。 
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砂砾土(T-3)：ηmax ≈ 0.40，k ≈ 0.08，λ ≈ 0.02。表明其衰减慢，稳定性好。 
验证：将拟合后的模型预测的 N 次循环后融沉系数与试验实测值(见图 1)进行对比，决定系数 R²可

达 0.95 以上，证明模型具有良好的预测能力。 

4. 室内试验研究 

4.1. 试验设计 

4.1.1. 试件参数 
选取冻土地区典型路基土(粉质黏土、含砂黏土、砂砾土)，按《公路土工试验规程》[11]制备试件，

试件尺寸为 φ = 100 mm × 200 mm，控制干密度 ρd = 1.65 g/cm3，天然含水率 ω = 20% (接近塑限含水率)，
含冰量 θi = 25% (多冰冻土等级)。 
 
Table 1. Parameters of test specimens 
表 1. 试件参数表 

试件编号 土类 黏粒含量(%) 砾石含量(%) 塑性指数 Ip 冻融循环次数 

T-1 粉质黏土 25 5 18 0/3/5/10 

T-2 含砂黏土 15 20 12 0/3/5/10 

T-3 砂砾土 5 60 8 0/3/5/10 

4.1.2. 试验装置与方案 
采用 TDR-300 冻土冻融循环试验箱，控制冻结温度−10℃、融化温度+10℃，每次冻融循环周期为 24 h 

(冻结 12 h、融化 12 h)。试验内容包括：冻胀率测试：采用位移计测量冻结过程中试件高度变化；融沉系数

测试：测量融化后试件的最终沉降量；力学性能测试：采用压力试验机测试不同冻融循环次数后的抗压强

度与弹性模量。 

4.2. 试验结果与分析 

4.2.1. 冻胀率变化规律 
不同土类试件的冻胀率差异显著：粉质黏土试件(T-1)冻胀率最高，达 12.3%，远超规范允许值(≤5%)，

属于强冻胀土；含砂黏土试件(T-2)冻胀率为 6.8%，属于中等冻胀土；砂砾土试件(T-3)冻胀率仅 1.2%，

属于弱冻胀土。 
随着冻融循环次数增加，冻胀率逐渐增大，5 次循环后趋于稳定，10 次循环时 T-1 试件冻胀率达

14.5%，表明反复冻融加剧了冻胀病害。 

4.2.2. 融沉系数变化规律 
融沉系数与冻胀率呈正相关关系(见图 1)：T-1 试件融沉系数为 0.085，属于强融沉土；T-2 试件融沉

系数为 0.042，属于中等融沉土；T-3 试件融沉系数为 0.008，属于弱融沉土。 
冻融循环次数对融沉系数影响显著，10 次循环后 T-1 试件融沉系数增至 0.102，表明多次冻融导致

土体结构破坏加剧。 

4.2.3. 力学性能退化规律 
冻融循环导致路基土力学性能显著退化：抗压强度：10 次循环后，T-1 试件抗压强度从 3.2 MPa 降

至 0.8 MPa，退化率 75%；T-2 试件从 4.5 MPa 降至 1.5 Mpa，退化率 66.7%；T-3 试件从 6.8 Mpa 降至 4.2 
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Mpa，退化率 38.2%；弹性模量：10 次循环后，T-1 试件弹性模量从 150 Mpa 降至 30 Mpa，退化率 80%，

表明黏性土的力学性能对冻融循环更敏感。 
 

 
Figure 1. Thaw settlement coefficient under different freeze-thaw cycle times 
图 1. 不同冻融循环次数下的融沉系数 

5. 冻土路基冻胀融沉防控措施 

5.1. 三级防控技术体系构建 

基于冻胀融沉机理与试验结果，提出“源头控制–过程调节–工程加固”三级防控体系，从诱因、

过程、结果三个维度实现病害防控。 

5.2. 源头控制措施(一级防控) 

5.2.1. 土质改良 
换填法：将路基表层 0.8~1.2 m 范围内的强冻胀土(如粉质黏土)换填为弱冻胀土(砂砾土、碎石土)，

换填材料含砾率≥50%，压实度≥96%； 
掺料改良：在黏性土路基中掺入水泥(掺量 3%~5%)、石灰(掺量 5%~8%)或粉煤灰(掺量 10%~15%)，

降低土体塑性指数与含水率，试验表明掺 5%水泥后，粉质黏土冻胀率从 12.3%降至 4.8%。 

5.2.2. 水分控制 
排水系统：在路基两侧设置盲沟(间距 20~30 m)、渗沟，将地下水埋深控制在 2.5 m 以上；在多年冻

土地区，采用“U 型”排水渠，避免排水过程中热量传入路基； 
隔水措施：在路基底部铺设土工膜(厚度≥1.5 mm)或沥青防渗层，阻断地下水毛细补给通道，减少路

基含水率。 

5.3. 过程调节措施(二级防控) 

5.3.1. 保温隔热 
保温板防护：在路基表层铺设 XPS 挤塑板(厚度 50~100 mm，导热系数≤0.028 W/(m·K))，减少地表

温度变化对路基内部的影响，使冻结深度控制在 0.8 m 以内； 
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植被防护：在路基边坡种植耐寒植被(如沙棘、披碱草)，形成天然保温层，同时减少水土流失。 

5.3.2. 温度调节 
通风管路基：在路基内部设置 PVC 通风管(直径 100~150 mm，间距 2~3 m)，冬季利用冷空气对流冷

却路基，夏季关闭通风管减少热量传入，适用于多年冻土地区； 
热棒技术：在路基中布设热棒(间距 3~5 m)，通过相变传热将路基深部热量导出，维持冻土冻结状态，

青藏铁路采用该技术后，路基冻胀量控制在 3 mm 以内。 

5.4. 工程加固措施(三级防控) 

5.4.1. 土工合成材料加固 
土工格栅加固：在路基中铺设双向土工格栅(抗拉强度≥80 kN/m)，设置 2~3 层，层间距 0.3~0.5 m，

增强土体整体性，抑制冻胀裂缝发展，试验表明铺设土工格栅后，路基融沉量减少 40%； 
土工格室加固：在路基表层铺设土工格室(高度 100~150 mm)，填充砂砾土，形成刚性基层，分散行

车荷载，提升路基抗变形能力。 

5.4.2. 刚性支护加固 
桩基础加固：对于强融沉土路基，采用 CFG 桩(桩径 400 mm，桩长 3~5 m，间距 2~3 m)加固，桩顶

设置褥垫层(厚度 200 mm)，将荷载传递至稳定地层； 
挡土墙支护：在路基边坡设置重力式挡土墙或加筋土挡土墙，防止边坡滑塌，同时约束路基冻胀变形。 

6. 工程应用案例 

6.1. 工程概况 

选取青藏公路某多年冻土路段(K345+200-K345+800)，该路段路基为粉质黏土，天然含水率 28%，含

冰量 32% (富冰冻土)，年均冻胀量 18 mm，融沉量 15 mm，路面出现多条纵向裂缝，病害严重。(见图 2) 
 

 
Figure 2. Geological cross-section of a permafrost section on the Qinghai-Tibet Highway 
图 2. 青藏公路某多年冻土路段地质剖面图 

6.2. 防控措施实施 

采用“换填 + 保温 + 土工格栅”复合防控方案：换填处理：将表层 1.0 m 厚粉质黏土换填为砂砾
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土，压实度 97%；保温措施：在换填层顶部铺设 80 mm 厚 XPS 保温板，保温板上方铺设土工布防止刺

破；加固措施：在换填层中铺设 2 层双向土工格栅，层间距 0.4 m，格栅搭接宽度 200 mm；排水措施：

在路基两侧设置盲沟，盲沟内填充碎石，地下水埋深降至 3.0 m。(见图 3) 
 

 
Figure 3. Sensor layout diagram 
图 3. 传感器布置图 

6.3. 应用效果监测 

实施后连续 2 年监测数据表明(表 3)：冻胀量：最大冻胀量 4.2 mm，较处理前减少 76.7%，满足规范

要求(≤5 mm)；融沉量：最大融沉量 6.8 mm，较处理前减少 54.7%；路面状况：无新裂缝产生，原有裂缝

闭合，行车舒适度显著提升(见图 4)。 
 

 
Figure 4. Effect comparison before and after engineering implementation 
图 4. 工程实施前后效果对比 
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7. 结论与展望 

7.1. 主要结论 

冻土路基冻胀是水分迁移、冰晶体生长与土体膨胀的协同作用，融沉是冰层融化后土体结构破坏、

强度下降导致的沉降，粉质黏土因颗粒级配与水分迁移特性，冻胀融沉病害最为严重；关键影响因素中，

土质(黏粒含量)、地下水埋深与冻融循环次数对冻胀融沉影响最为显著，黏粒含量>20%、地下水埋深<2 
m 时，病害风险急剧提升；室内试验表明，10 次冻融循环后，粉质黏土路基土抗压强度退化 75%，弹性

模量退化 80%，力学性能损失严重；提出的“三级防控体系”效果显著，“换填 + 保温 + 土工格栅”

复合措施可使冻胀量控制在 5 mm 以内，融沉量≤8 mm，满足工程要求。 

7.2. 研究展望 

未来可进一步开展以下研究：极端气候(如极端低温、暴雨)下冻土路基冻胀融沉机理；新型生态改良

剂(如生物炭、纳米材料)的研发与应用，提升防控措施的环保性与经济性；基于数字孪生技术的冻土路基

病害实时监测与预警系统构建。 
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