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Abstract

Highway subgrades in permafrost regions are often plagued by frost heave and thaw settlement
diseases, leading to problems such as pavement cracking, settlement, and mud pumping, which se-
riously affect traffic safety and service life. To reveal the intrinsic mechanism of frost heave and
thaw settlement and propose targeted prevention and control technologies, this study conducts a
systematic research using a combination of theoretical analysis, laboratory tests, and on-site mon-
itoring. Firstly, the physical and mechanical properties of permafrost and the impact of freeze-thaw
cycles on subgrade soil are clarified; the core mechanisms of frost heave (moisture migration - ice
crystal growth - soil expansion) and thaw settlement (ice layer melting - structural damage - bearing
capacity reduction) as well as key influencing factors (soil type, ice content, temperature change,
groundwater) are analyzed in depth. Three groups of subgrade soil specimens with different pa-
rameters (silty clay, sandy clay, gravel soil) are designed for freeze-thaw cycle tests to study the
degradation law of mechanical properties. Finally, a three-level prevention and control system of
“source control - process regulation - engineering reinforcement” is proposed, and the effectiveness
of the measures is verified through an engineering case of a section of the Qinghai-Tibet Highway.
The results show that the silty clay subgrade has a frost heave rate of 12.3% and a thaw settlement
coefficient of 0.085, making it the most disease-prone soil type. After adopting the composite
measures of “replacement with non-frost-heaving soil + geogrid reinforcement + insulation board
protection”, the frost heave of the subgrade is controlled within 5 mm, and the thaw settlement is
<8 mm, which meets the specification requirements. The results of this study can provide theoreti-
cal support and engineering reference for the design, construction, and disease treatment of high-
way subgrades in permafrost regions.
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Figure 1. Thaw settlement coefficient under different freeze-thaw cycle times
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Figure 2. Geological cross-section of a permafrost section on the Qinghai-Tibet Highway
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Figure 4. Effect comparison before and after engineering implementation
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