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Abstract

To reveal the damage mechanism of super high-rise concrete-filled steel tubular (CFST) structures
under extreme fire (heating rate > 20°C/min, peak temperature > 1200°C) and propose targeted
repair technologies, this study conducts a systematic investigation through a combination of exper-
imental research and numerical simulation. Three groups of CFST specimens with different param-
eters (¢300x8mm steel tubes, C60/C80 concrete) were designed. High-temperature tests were car-
ried out using the ISO 834 standard temperature-time curve superimposed with an extreme fire
correction coefficient to measure the temperature field distribution, mechanical property degrada-
tion, and damage characteristics. A therm-mechanical coupled numerical model was established
based on ABAQUS to verify the experimental results and analyze the overall damage evolution law
of super high-rise structures. Finally, a three-level repair scheme of “damage assessment - local re-
pair - overall strengthening” is proposed, and the repair effect is verified through full-scale model
tests. The results show that the damage of CFST structures under extreme fire exhibits the charac-
teristics of “temperature gradient dominance - aggravated interface debonding abrupt drop in
bearing capacity”. The bearing capacity loss of C80 concrete specimens reaches 72.3% at 1000°C.
After adopting the composite repair technology of “carbon fiber reinforced polymer (CFRP) sheet
strengthening + polymer repair mortar”, the structural bearing capacity recovery rate can reach
89.7%, which meets the code safety requirements. The results of this study can provide theoretical
support and engineering reference for the fire-resistant design and post-fire repair of super high-
rise CFST structures.
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1. 5|8
1.1. fARERE5EN

Bt IR T AL RN, B e R (R P> 100 m) BURE BN, AN TR b S5 R DR S B AN ) v 0 A5 TR
et RPURIREE, SOV RO E . NS RALIER 1] AT, B SR KRB THEE R AR
WRIEI TR« KRR ST SR AR s 2 T B i K PR 55 (0 2017 #F3 JFE KHEK I K 5 SR I EZ 3K 1300°C)
SRR EA TSR [2]. AT LZ BETIMEJCORTHLER 10°C/min) FRISHITERE, Xk K
ROOHIRIEZFE>20°C/min) HAGHLEFT AL, HZ RGMBEEARER[3]. B, TFRNm KR T
o B R B L S R B IR AL SR BRI ST, W ST R AT e RRRE R A E
EHIBMES TR .

1.2. EAIMRZIIR

[ A2 5 A R R AN AE TR B LUK 7 : Lie 5[4 18 I AL, KT A0 5 TR e 1 10 St TR 25 58
FEREIRIE T R NE T FE;  Virdi 5[S1R A ABAQUS 40l 1 ARiE K AN TR Bt AL RV EE A A, H
AR B KR AR LA THR R . E AR FE T, 28 FESRAE[0 )3 Y 1 A TR - S5 M e K seih  aks
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(BRI S A K K7 5k ERRESE[TIFT L T KRG N IREE LB EOR, (BB TT RE AR L. 4R
b BURBFRARAE =R s B KRR BB 07 S AL W0 s R = 25 8 I B € 15 5 T 282 P 4533
LR SItRIEC S K NITE SR QL STINE L8 DM RYIL 5418
1.3. IRARTSRREE

ASCEZRTTLN R Bedi KR A RIBE - SRR BE A 5 1 A AR A U s T S AL
BB, SRS BRI R 5 BCRIE . BORBRER: W58 BETh — mrif ik —~ B B —~ 15
PPt~ 2 R T5 R it~ B BRI
2. KR TRERRLGWRAIE IR E
2.1. @R THRHERER AL
2.1.1. W= IERE

R GB 51249-2017 (HEFUNEEHIBT KBARMTED [8], Q355 MMAEILE T ('C) NI ARSEE oy(T)FT
S VSE

o,(T)=0,(20)x[1-0.0005(T -20) |(20°C < T < 600C)
o,(T)=0,(20)x0.7xexp[ -0.001(T - 600) ] (600 < T <1200°C)

Hrb o (20) A T AR (355 MPa). 3 K 5T, A4 R IK 2 Bt I B T v 38K, 1000°C
ik 24 x 1075/°C, 5y 51 RN Rl e 1 o
2.1.2. BELSIEMERE

C60/C80 Tkt LA i N HIHLE IR (DRI R A3

£.(T) = £.(20)x[1-0.0012(7 -20) |(20C < T < 300C)
£.(T) = £.(20)x0.64x(1200—7)/900(300C < T <1200°C)

i R IREE L2 R AR KM SRR, C80 skl AE 600°C LA 1 L THE ¢
4%, FUIHIRGSEPEREZURI T O]
2.2. RGTRCEIRIRE

RAESEA TR 07 7027 B, SRR D VA BUKBTHAR S A6 T AR AR, B K R AR
TRk S5 R R B 07 A T R

D(1)=D, 1)+ D, (1)~ D, ()< D, (1)

b D, (¢) MBI AR, D, (¢) ATREC AR, FIEWE AR AR . B0 th AN iR
BRI SEG IREE BN ERBRITR K=Y iR S SR B [10]
3. B AR TNERBRLIEHEHR
3.1, R
3.1 REBH

it 3 HANE R E B AR, (LE DK 1500 mm, X8R A Q355B 4WFt, #M% 300 mm, B
J& 8 mm; VRIS HN C60. C80. (L% 2)iRAMF s ¥ B am A, {RUES F) 52 J148 57 .
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Table 1. Parameters of test specimens

F 1L AHSHER

ENEE TR BN RS (mm) TRIBE 5 A Bis K AR T i 2%
SC-1 9300 x 8 C60 T i K 5
SC-2 9300 x 8 C80 I Wi K 5
SC-3 9300 x 8 C80 30 mm B K iRk Wi K 5

Table 2. Concrete mix proportions (kg/m?)
*® 2. RBTE A (kg/m’)

S8R 8 2 U Bk ik 03 f UN A nrl
C60 420 60 60 680 1100 165 7.8
C80 500 50 50 620 1150 150 9.0

312. RERESHR

RHARBLK IR 3 mx 3 mx2m), FH HZEET 1SO 834 Arift LB 1L, Mo K 5 THim
FBGEN 25°C/min, WL 1200°C, FRIEI ] 120 min [11]. WAFREATE 12 A A 5 R T7 0
W3 300 mm A7 & 14, MR ASMEES 1A, MRS RGBS TR 2T, i 8 s
FARBI AN KT R AT T A 452 05, D) S S TR A5 IR -

3.2. REEHRS S

32.1. BERHSHNE

Wi K 9T 5 AN E TR e AR IR B 3 BRI R FE 0 A o KR AE A 30 min I, 4N/E SMEEIR FE 1k 800°C,
WEERLE 650°C, JREETAZ O IX IR 320°C s PRIEFT BE(120 min), I AR BEE M/, VB A% O X
FEFHE 580°C . C80 VR &k L il Il FEAL I IR T C60, DN momist 1% S my, FHARETE N
(C60: 1.85W/(m-K), C80: 1.72 W/(m'K)).

3.2.2. NEMEREME

KR JE A AR E 1 5 B3 R (5 3). SC-1 (C60)IRAFH T A& # /1N 2850 kN, K 7 i B4 2 890
KN, #5153 68.8%; SC-2 (C80)ih iR &# 71 3260 kN, KK J5 4% 890 kN, 2% 72.3%; SC-3 (C80
+ B KRN IR I KRG R )T 1860 KN, ik 3 43.0%, FHARH KIREHRER RUE g Wom KRR,
RSB RBL “E0F - A - Fae” =B BURFE: 300°C PLF 2[4 (H51 2k % <20%), 300°C~800°C 45 (45
R 40%~60%), 800°C LA (i 2k %>70%) [12]. (M7 3)

Table 3. Test results of mechanical properties of test specimens after fire

= 3. W AREHZEEEMNER
Wpbgs  BRED KRERED) RRARKE g o BB

(kN) (kN) (%) (%)
SC-1 2850 890 68.8 45.2 71.5
SC-2 3260 890 72.3 52.8 75.3
SC-3 3260 1860 43.0 28.6 52.1
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3.2.3. IRGESES

KRG E BRI =T (1) AR R R MR S R 15 mm). AR
(B2 EE 0.8~1.2mm); (2) JREE L. FRRRITERIVEETE 5~10 mm). 436 OB R4 (I K54 55 5
0.8 mm); (3) FLEHRG: W& S5IRE+H B G IBUE 35%), s 2.8 MPa 4% 0.5 MPa
[13]. C80 MM HIBERIR L C60 T/, [H B30 IEE L Py LB RAR, 875 R 1 AR .

4. Him KR TERREELEEER
4.1. B{EHEBNE

3T ABAQUS E AV IR H A A B SR, SR Sk 87T C3D8T (LS + S5H040 7). 4NH
AR GB 51249-2017 HEFF 1 =il Mk BE b 28, Y %E - A MR H Sidoroff $ 445 54, FL1Hi K45 R A cohesive
BT AREADLCHil 45 5 B R R AR A A i TR R A ) o W K IR i 4 i A P 7R )F DFLUX &
N, G GEA s A [ T, TR 52 K0 B S50 AR F (R S R 8 0.85, XA R4 25 W/(m? K)).

4.2. {EBWIFSERS T

4.2.1. tEBIIEF
BUE BT BN IR SR BRI & 5 R I 4 R & R AT, IR <%, KB IIRE<S%, £
RS TR AT A AU R i Ak 5 5 A T

4.2.2. BEHRGREENE

SEFIE S IR, R e E N IR AR SRR 10 m) B GEAL. Mm KRAEFR
ZERA 0 IR 17 BIZ B KR, 120 min BY 8GR HTEIRH 3 m RIS D > 0.7), it
0.3~0.5, TR H<0.3. B 2 “JmilErh - 8P B FRAE, NS i 5 TR R R 0 0
PHUY E BN, FE R R TR AR R R .

4.3. HMEARERME S

KA IERZ R BT, AT E BEJE(6/8/10 mm). REE 155 5 (C60/C80/C100) B K A4 & 5 (0/20/40
mm) XA RN . 25 R B KRS R R A U R 2R G AL 42%), AN BE IR IR Z (31%),
VR 5 RE A /N (27 %) [14] 0 BT K R4 B BB Y2 3 JE LR 015 K S, 40 mm 7 K ) AT (3 e i 13
AR 300°C, A ITIRZE T 50%.

5. Win K RIEEMEEZAR
5.1. BERRGHRIE
ETHRGIEMLR, i “SQEIHRER .

5.1.1. —REEREHRH, D<0.3)

KH “RIEEE + PIRRE" TE: ERNERINANZESIREE LR, IR KB E— Rk
JR(EFE 5 mm), K S5 ANE
5.1.2. ZREEHREHRL, 03<D<0.6)

K CREBES + FEME 7. BIERZRREERE>100 mm), AR R R,
MRS R TR GBR 2T AT 230 2~3 2, PURLBRIE>3000 MPa), 1356 A kG 45 5 K3 11
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5.1.3. =S EEHS, D>0.6)
K CORAARINE + PERERRTET AR BT ESZMB(KE>Im), EHNE S B EIRE L, £
FEAMUIG T AN B 42, SR s g s, 1RTHRE S 5N,

5.2. EEXMREIE

5.2.1. —REEHREIE

IEHL SC-4 RAFCRENT, D = 024 RH—FEET7 L4, BEEITRIFYae S AR,
(W7 HEE G R AR F11E 3120 kN, RE K 96.8%, HliaAREi=HI7E 18.3 mm, NIFETKE 42 168.5
KN/mm, & e hr 0 T RTKF[15]. $h 58 il i (BERLEE K SAEE, 500h) B8R, IREEL
HIE 99%, MWERMIOFH IR, WRE L 5WEFRTARHIRE, B RZEE O 7T,
SER AME SR TR, W2 GB 50017-2017 (ANSE R itbrvE) k.

Table 4. Mechanical properties and durability indicators of test specimens before and after primary repair

* 4. —REERRRHHFMEST AR

EEL0N (3% (35 PREZ(%)
W BRI (KN) 3220 3120 96.8
il 1) A2 T (mum) 21.5 183
NIl (KN/mm) 150.2 168.5 112.2
B E IR E 7 %(%) - 99
SR B - TR e

5.2.2. ZRIEEHREIE

IEHL SC-5 RMF(H S, D = 047)KRH _RIEE ) RH, BEJGHAT 1R NS it e
PRSI 5)o BE G RAIR A& Z F175 3050 kN, PKE 2 94.1%, FARHE/NE 20.1 mm, NIEKE
% 152.3 kKN/mm; FEBIVNRKG SR, REE5REIA 3.2 MPa, BB EFTIRTF 220%, Hn#ad e i
PLR[16]. AW EEMENR, FIHRESYIBAMDRELREIE 99.2%, TILBR. REEEEIE, TReF
YA AN RN &K%, ARV, WUE T “JREESR + FHmE " g7 ZrnaT i,

Table 5. Mechanical properties and interface indicators of test specimens before and after secondary repair

=5 ZRiEEMERHNFMES FEER

bz BEH BEJE WA 2R PETH26(%)
W BR A FL S 1(N) 3240 3050 94.1
il 7] A2 T (mum) 356 20.1
NIl (kN/mm) 90.9 152.3 167.6
SRR 45 55 [ (MPa) 1.0 3.2 220.0
Wb I 52 (%) - 99.2

5.2.3. ZREEHREIE
L SC-2 WA (BB, D=0.723)RH =FBE T R#ATEE, BRIGHHIT R nER S
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TEA ML, ATVEAL 15 ERe . FERERE ) BB BRI 3% 6).

Fr o maaR i g R B8R, BEEIRIEKE A 2920 kN, TKE 2K 89.7%, A /N E 22.5 mm,
NIBEVK R 2 85.2%; M AN, (B8 G TRE - P53 SR IE 98%, FHTH R4 SR fE K 5 4 2.5 MPa,
/£ GB 50017-2017 (XL B THRRHE) B3R

A I ARG R FH AP A s 5238 77 sROm kI B2 7 & GB/T 50152-2012 (VR EE L 458493058 77 24w
#EY ), @KU BEERAA R LR, ERE, THERANR,: SR e RE0X 0.18,
BERTET 125%, FEReRE )R E o, B2 IEE nUS NIRBCTP SR, et RE0X 3.5, WEPUERT
HCBRFESSE. GEPERERE” MIESR(LAE 7). 1E 200 IRIEFRA A, WA H I B B, WS
W YRR SRS, AE T B R S S PR AR

Table 6. Comparison of mechanical properties of test specimens before and after repair

6. EERIFRENFIEREXLE

febr (C3-i) BEE R (%)
W PR A& J1(KN) 890 2920 89.7
it ) 22 FE (mm) 52.8 22.5
NIl £ (kN/mm) 16.8 132.4 85.2
G KL 45 54 % (MPa) 0.5 2.5 89.3

Table 7. Cyclic loading test results of test specimens after tertiary repair

F 7. ZRBERRAHEAMEBNEER

febr (C3°Ri} BE5E RTHE (%)
SOk PE B R 2 0.08 0.18 125.0
SEME FR Y 1.2 35 191.7
TEIR IR 200 VK5 IR FERE PR R0 E 1 T B4
HENEEFIARN FRYE W] YRR T

5.2.4. EEREWAMTIL

BRI KR E VR R M i 2 4 i k8, 456 RIRME R T7 IR HuE 5 K01 2 35 108
ZiR, XS ANEREIT U R T i

1) FrUR AU K e G5 K T 455 5 R T B ) 3 B IR e S AN R L RS S AR Ak
AENFIRN . — BB B iR S VB = BT A B, B R R 44 5 R SR I
PR I SR A IR 4, = ZAE S vh e s AR I P 5 0 o2 TR 45 T A B EL R S A% T FEVE

2) MW AMESRTIS]: — B R IIBT KB — R, SR SRS TURMIERE, 500 h #%
i E iR el B R P REMBID RS A AL R, SRkt WE TR ARGSs,
FrI By D)5 KRR E VIR TR GUKIB DI, =B R B 3 SR L sk dr,  mI 78 70 S e AW 1 28
5 IR, G5 A TORDRE AL BT BE L AE )R — 4R T S B A se Ja(17].

3) KIRBOEDL: Rl TS RAERSME T, —~RBEFE 5 FEXNREETER 51k
AR N E IR R LT AEATRE SRS, 8 e I R SRR B s =B RN e DX o g S AL
EVCR B R R SR T ANE 7 6 o
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5.3. TENRARB

Fol 2 5 (R 150 m)BN TR e T A B A K R (R AR 1100°C), RAIASCHE B R 4
RFATEHE. BEJE 1 FIREERN SR, SWTTHERE<S mm, MAmA5, REIFMHG: o —%E
SRR TIESE , —HERFMERE, =FEETRBRTEMIEEOR, SmiiE FEEEAR
i A P

6. ZiLE5RE
6.1. FE4LP

Wi K 9T BN TR B L S M IR P 7 S IR B B R A AT, TR A% O XU B i i AN AMEE 300°C A L,
C80 VRt T L S RAK T C60; LEHaffisib B “L80% - /A - Fase” =B BURFE, 1000°CH €80
TR LA AR B IR IR 72.3%, #5005 E BRIV il TREE LRSS P R B BUE S RS
AR A BT, B K AR R M T A 1 S UK R 2, 40 mm B KRR AT AR B R T B
50%: I “ERBEHEARER” GefMIKE SR, HEHRRATHEE AR %1k 89.7%,
W RTEEK .

6.2. MRRE

AR HE— BT ECLT R TT: i K R SRR S VR T B s B O s AL s BB KB AR
(UIARBT KERED IWT A 5 N 5 TRy 2R AR BRI RS R S 0 5 7 A

&E ik
[17 ZE5E, BRESC NERE PTG M]. dbat: PR Tk H ko, 2018.
[2] Efplg, XIFUE. Ko SENETREE LM R RS ED]. A TREZR, 2020, 53(8): 1-18.

[31 Lie, T.T. and Chiew, S.P. (2017) Fire Performance of Concrete-Filled Steel Tubular Columns. Journal of Structural
Engineering, 143, Article 04017041.

[4] Virdi, J.S. and Nethercot, D.A. (2016) Numerical Modeling of Concrete-Filled Steel Columns in Fire. Engineering Struc-
tures, 121, 283-295.

[5]1 " NRILFIEA B S @ WEE. @IS B K BRI GB 51249-2017[S]. Abxt: HETHRIH et 2017.
[6] EILF.GB50017-2017 (HXLEMETHFREY FBR[T]. 4M45H4, 2018, 33(6): 77-79+114.

[7] GkEEME, BB, SRR s L sR S R IR A FE )] B AR, 2019, 40(3): 142-149.

[8] XU, ML, ANETRE L AL AR T [)]. A - T RE2AR, 2018, 40(10): 1876-1884.

9] BREH, mEzs. WERG LW IR G IHEREIFETEN]. LRI, 2021, 38(2): 123-131.
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95 9 ek K TAEEEAR, 2023, 43(6): 1346-1357.
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