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Abstract

This study investigates the bearing behavior of shield tunnel segmentlining in erosive environments.
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Based on numerical simulations, a systematic investigation was conducted on the influence patterns
of four distinct stages—namely, before segment erosion, after the loss of bearing capacity at the seg-
ment surface, after cavity formation on the segment surface, and after river water freely penetrates
to the segment surface—on both the overall and local mechanical behavior of the lining ring. The
results indicate that erosion at the crown of the lining ring induces asymmetric structural defor-
mation, leading to continuous increases in crown and invert settlement, along with directional shifts
of horizontal displacement within specific circumferential intervals. After river water intrudes into
the segment surface, the location of the maximum horizontal dislocation displacement changes, with
its magnitude increasing by approximately 50%. Erosion-induced cavities cause significant tensile
stress concentration on the surrounding rock side near the cavity, while the pressure concentration
zone in the surrounding rock exhibits a doubling of compressive stress. On the surrounding rock side,
bending-induced tensile stress dominates, resulting in a minimum principal compressive stress at
the cavity center that is lower than that at the surrounding rock pressure concentration zone. Con-
versely, on the clearance side, stronger bending-induced compressive stress leads to the opposite
trend. Based on the findings, this paper proposes that differentiated monitoring strategies should be
implemented during operation and maintenance, with particular attention to eroded segments,
joints, and stress concentration zones. Local reinforcement should be applied to abnormal areas, and
anticorrosion inspection and protection of connecting bolts between segments should be enhanced.
The results of this study can provide theoretical references for condition assessment, operation, and
maintenance of shield tunnels in similar erosive environments.
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Table 1. Material calculation parameters
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Figure 1. Assembled segmentation diagram of lining ring
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Figure 2. Schematic diagram of bolts at segment joints
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Figure 3. Diagram of segment model before erosion
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Figure 4. Model diagram of bearing capacity loss at the segment surface layer
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Figure 5. Model diagram of cavities formed on the segment surface
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Figure 6. Diagram of river water intrusion into the segment surface model
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Figure 7. Vertical displacement of the lining ring under segment erosion conditions
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Figure 8. Horizontal displacement of the lining ring under segment erosion conditions
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Figure 9. Resultant displacement of the lining ring under segment erosion conditions
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Figure 10. Location of critical stress paths in eroded segments
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Figure 11. Maximum principal stress of the entire eroded block (kPa)
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Figure 12. Maximum principal stress of the segment element at the location of concentrated surrounding rock pressure under
segment erosion conditions
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Figure 13. Maximum principal stress of the segment element at the cavity center under segment erosion conditions
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Figure 14. Minimum principal stress of the entire eroded block (kPa)

14. WIRMAENERBHNENT(KPa)

K15 DN ARkt D0 T B A T B A R ARG I (8 ST B R R T, 1] 16 N FrpdR
P LR BRI 7L R (A B TC I B OK RS 0 T T TR (R SR OGS ZR B, B IR/ R
JIBEBEGR R RTEN AR R E IR UG, X T8 R BOE KPS BT RN ER T, R
P IVAVA- M= R =Rk Sk (RAEE ML PVANA R =N i R VA E S U 1D iR M ST Ei0E - 24N SV VA PR EVANG SV
JSE A B B L s g 5 i A T AR oxt i Aor B /)

X i TR O LA R B SR O (U AR T R 2, S R N B, HALN S
ol 1P R 2 A S HRA RO, i B T SR R AR AR BN (7S i R A g X BT AR AR
Lo 0F A7 B P L e s g B e A P A g 2 Ay B R i /0 2 N g D 5 T OGS IS A v B P R A
M0 AR5 il e R g i, LSl T N g e R SR B BN, i L T SR AR B
i N R ES , IX BT SR ARAE TR SR X LAV B LY LA s 7 B R R A N A B /s N )

j(o

-8000 -

-6000 -
=
& -4000
=
ﬁ-zooo - BeRER
z 160" i
ool 0" O E A WA

200° —o— HIRZMAYE SR
o |[o— BRRE LN
2000 | % —O— YRR IR N 28 )7 R 2
2407 280° s . s .
0.05 0.15 0.25 0.35 0.45

W S TR (m)

Figure 15. Minimum principal stress of the segment element at the location of concentrated surrounding rock pressure under
segment erosion conditions
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Figure 16. Minimum principal stress of the segment element at the cavity center under segment erosion conditions
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