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Abstract

With the acceleration of urbanization, the generation of municipal solid waste (MSW) has grown
exponentially. Municipal solid waste incineration (MSWI), as a treatment method capable of achiev-
ing significant volume reduction (approximately 90%) and energy recovery, has become a core
strategy for MSW management worldwide. Facing increasingly stringent global environmental reg-
ulations (such as the EU IED directive, and China’s GB 18485-2014), the traditional “single pollutant-
single control equipment” series treatment mode struggles to meet the dual demands of deep puri-
fication and low-carbon operation due to bloated systems, high energy consumption, and negative
cross-interference between pollutants. This paper systematically reviews theoretical breakthroughs
and engineering practices in integrated synergistic removal technologies for multi-pollutants, fo-
cusing on: 1) the structure-activity relationships and anti-poisoning mechanisms of novel catalytic
adsorption materials such as modified vanadium-titanium-based, manganese-cerium-based, and
functionalized MOFs; 2) the microscopic mechanisms of competitive adsorption and synergistic re-
dox between NOx and dioxins, as well as Hg? and halogens at catalytic interfaces; and 3) the engi-
neering application performance of integrated technologies such as catalytic filter bags, synergistic
wet oxidation, and in-furnace inhibitor injection. Finally, combining artificial intelligence optimiza-
tion control and carbon capture technology, the paper prospects the development direction of the
next generation of intelligent, low-carbon MSWI flue gas purification systems.
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1. 5|8

BEAE N DR P R e s, ST AR TS BL I (MS W) I BE L o e BR e Bk i . AR 8 351 5%
T o 8 Y5 SR RS TS G RS, 17 AR 37 1o B8 1 (MIS W) . H, AT G vy 2850 1) sk 25 e /7 AN e Y I Wi A 3
WL AT R R B OSBRI (1] WG, RIS E KB AL B2 Ok BIAH A m K, T E S
B E TR AE PR AR MSWI WM B IRTAT, A A AE I i S A K5 gk S XS Py L DG (408 e 20 )
WARAEAE , 3R T BT X548 5275 Y M HEBU BB [2]. MSW 1E N —FRhAE B “okt” , R AR =4
(VR L o A R % Lk sl i 2 32 BT e 4R ZU A I(NO,) . BRI (SO,, HCL HF) . FEATER
M5 ZP)(POPs) H &R FIE R A HAI(VOCs). H, NO, FERIFET MSW F1 & Z ALY A (R
B NOY) M RS B A EALGA IR NOY) . NO, AMYU BRI AL 2 55 1 R4, I8 SRR
REJZ[1]e BRMEUAEZRIT T BRI, S(CHMEITER. Kb, HCURFEE W, il &R
Ph R ZEE,  H Cl JoER & ZREJE(PCDD/Fs) Mk & Bl 1 8 5Bl 3] POPs LA PCDD/Fs R, BA
PR B BUR ISR AR o AR BORAR AFE iR AU A IR (250 C~400°C) S AR AL (BLIE Mk &
FATHTIRY) ) [4]. B R FEEARE S RENSE. RMHg)ME%E. He IS & S T K R
P, BORTRERAME A, AR AR 1 E RN X A RGBS A AT i . R4, VOCs HHER RY)
RSS2 A RURL ) (PM.s) AL AU 1) L AT R Y . 78R8, MSWI ] VOCs FIHEISUA + A5 2,
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HMEEZ xR S HE) [5].

TR H R ISR ), S E S S EHE RS . 35 E EPA TE 2024 £ 2025 FEAHZRSE T
BEXR BRI/ NRYIR T MSWI 15t P B8 A% A, RE 2 0T ORI . 4 J A NO, FI PRI [6]. WA Tl
Hejilde 4 (ED)FI o H ) GB 18485-2014 (JLHZZ il & (b 7 brife) 8 5 1 BARMIHE R B . A& 5EH)
TR T 208 KA “SNCR + BHiEMRR + Wt + N4 + SCR” KK e H A S
[7]0 XA 32 B Iy BEFE S FAH O . M IETAROK FLRAR =1, DA R is el 1) ) 7 T e A5 55 70 R 5K
BAARRE , AR BT B IS AT IR i VAN [E] (W01 SCR 75~200°C 548 ¥ i, AR 8 B AR KT 200°C),
SEURSTERA S TR EIMAAAH, ERERORRIEIRE(S]. ZHRABB & AR, FER A
IEAT YA AR 5 B, R )R AE b B U SRR ) GBE) R I TT (9] 4k, SCR AT T BEHS SO, Ak SOs,
5635 ) NH; S N4 R IR & ke, 580 R B & S TR B 2 JRIR AR T RE T80 He IO BIREBEE[10]. 45
RRTR, JFRBEETE R — F T R 23 B 2 FE e I R R BOR, RO MSWI A 6 B4R 1)
R . X AR BERIIRTE . FRACEA, IEREF] 5 4 2 (8] F A i TR OB g 22 PRl o

g LR, R 215 Y R BR R R TE B B RE S b IR 2 R DL T ERHE ), (HZ T
SR BV AR ORI R A R, H AT AR MSWI AT T A R AR K. SRR R, B
SCHR 2 SRR T FA 5 G A4 | SR UK A AR A DR S B0 B ) 2%, R 2 A O et - ST e
UL - — R TR S RA LAV . THRE IR REMEITN TAE, BIEEHEARBA B LTE LR T
B IE FHIA A, 38R 2B AR M S8 25 ) Tl S 4 PR AZ O AR T3 (0 22 2193 5 4 I B B0 AL
TR RGKIRIZ T R EESS), TN T 2R BRI AR HE . ARG RGE TR R R
R RBLEN IS ZOU TR S B s RO VPAHESE , 0 N TR Re(ADPRACIE 1) 5 Bl SR B AR g A\
FYEER R, DIHPARME T — IR IR E SRR ) SR BRIZ AT 2005 I8 RE AL MSWI S AL HE R G (it
W RSB 5

2. ZiISEPhERRELHIES MU EEER

FERD RIS BR A Z b, ARG G e A0 s B 57U T 4T 9 IR AL, TR A R AR TE S
P R OG0 TR BRI LT A AR T AN AL (Y L

2.1.NO.EE 5 PCDD/Fs =% 5 T4

TERERIE(V205s-WO/ TiO) AL FIZR T, IS HEAT 3 NO, (IR MEME LI R A PCDD/Fs (S H A
PGk CB) AL A . NHs ERIEIR T, oW R 7E A A0 ) R T (1) Bronsted BRIEAL s b T i v
NH % WEFURIN, ik FEI NH; 23 S I SRS G N0 FEME A R TR, AW SE 44
AR PELT 25, I B NH; FHHIE @ 3R T NO[11]. 4R1fi, PCDD/Fs 4 V,Os iE MEAL 2 A B
SRR Sh e AR ) A2 i, BRI iE IS Langmuir-Hinshelwood (L-H)WLER FFARMEALFITENE . BEAh, LS VOCs
MG R TTRE S NHs N AE SO RPII, T FEIE JE R PR ZOCR [ 1] — MM, SRRl
SFEAREN I EAE AR, T RE YA TEAF T NO, B 5[ 12]. B, 8 9 = o
BCRAS, PTRATFHR 2 iSO AR e P4 p o 7E RS LRI R (W0 Co-MnOyH, &R NO fA7EH]
DA BRIV S M PG ER, TSR B A MU IR AL . ez, AN ALt m] 58 JR 38 SCR X
EAEE AL RE13].

2.2. REEHELSEaRBEE

TOE 7R (HE®) A 1 He e 482 F IR ¥ 45 AT IR (T AT 4« £E MSWI RS, HCL AU TS ), thig He'
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AL REEBT . 7E V2Os-WOS/TiO, AL TTIZ TH, HCI 1 S5 I K E Deacon 58 AE B VE S A (U
Cl-B{ Cly). IXEEIFE R A BAT BRI EALTE, BRI A B A I He A0y HeCla [14]. LR
B, Hg® M AE RS F M ALR) a0 L-H HLEE, B Hg® F1 HCI ¥ 75 Je MR B AE AL R R TR, SR )5 R AE OB .
TR HCI BES 25 32T He® MR, T Ox MIAFAENIMREE 1 2T P SR 28, ZERFREALIRIA[15]
U4k, NO 7£ He M b RE ¥ 17 28 A th. — 7T, NO A B NO, BT s s ALk, w] gt
Hg" %4k; 73— 75T, SCR RN NH; 2 M MR L, Al Hg B, Bk, £ ARk
ARSI NH; RBEGTR, J8 f i B % 0] il ok i i 9 T S 16] o

2.3. Bt - 6 - REORZE(ER

MIRIRARAE T, SO % HAtYS G 2 BRIEA Rk A M o Forb, (R3EE ) S ZR AR DS K
I, SO, MAFAEA I BEAEE NO [ NO, ¥4k, HEmmiidid “Hi SCR” BRAZRIRF AR . FIRF, SO,
A RETE N L8 4 8 AW 2R THI T OB BR 31 07 57, 85X Hg® Ak 22 B[ 17] . SR » 75 B 6 SR fi Ak 7)1
SO, 7 5iE M4 & TE ik e IR ER £5(11 MnSOs), 7 a5 i VEAT SR ZERFL, 5 BUEA AR AME R . 1X
FR ARG T 0 o3 s AT I P 5 K B2 — (18]

3. thEIREERIN REM ORI R

PERRESE O35 2 53 0 I BR (R0 L BB 7 o LA S A P 7 9 95 UL 47 11 (R A
WD) ST AL )RS\ D RE S VELL A SF U TR . MSWI R 1 B U ey B 3L o B B A
PERLE 1.

Table 1. Comparison of air pollutants in MSWI flue gas and their synergistic removal technologies

F 1. MSWI S EBISRM B AN F B FRIRAII L

ERALS  WEHAEE RO oty R
o WHERIURZIEPTRE) KR AR, fiih, AR, JEAS AT,
NO;+PCDDFs LIRS o\ i Ce fifis  PCDDIFs £ >07% L5 2 KRR

i 255 32 IR

TRUR R PR B 5% BRI, R s (60%-~70%),

NOx + PCDD/Fs it SNCR

& N/S 103 35 LB N 3 :
& N/S 77 P SLBHT PCDD/Fs & %, T EER I SO HETK
B NaClOs. O3 Fi AIRRE I, FAFIBFER K, B
NO.+Hg AUk RS SRR, CEEST oS, RO 2
NOL+ e+ SO, TR 18 CuO/FeO; 2 BBl SRR, TR
THETTSOY gy, P HAHM, EovokEk  ARER, BRI
. - Mn-Ce Al FIF HCI Hr R &4k He, 5% SO2/H20 H# g4,
NO:+Hg' MR SCRYMEL v i g EHBI AL B o A

3.1. B RKEAEALT

BIRE G V20s-WOs/TiO2 A0 71 32 ZEFH T Bims , (238 ook vl ik 2 [F] i PCDD/Fs 1 Hg FRIA5CR
MSWI A 48R A J5 iR 8 % 7E 140°C~200°C, K T1£ 41 SCR & . B4 I &8 (Wl Ce. Mn. Fe
Cu)Biff Lo R AT+ & RIETE DM, PR BEAE. B, Mn 15 NBEIEHHIKE T NO % NO, 1)
g, WM PUis SCR MR R 2R [19]. BhAk, i b B A% 58 45 40 51 2 AL 45 K T Ak S Ny H
TSR, V/TiOx AL BRVE AL 55 AT 1E R NH; 1) “Zvhitl” , R N i i B IR EE, i
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G201 TIEFATIRA R R IR, R BRER AL AL BRI SR R I ER 1, BRG] AN BAFI( Ce FN Zr) R 22 [ VA
AR DARE SE AL T BB IE B T RR T Ui & R T R RE 1. B, BRIRIL CeOr fEHUIN & JE (U K) & 77
MR F[21].

3.2. - EAENY

Mn-Ce Z AT R A B R ER S AL 1B R G R (Ce/Ce* 5 Mn®*/Min* HL X i S BE 71, I 2 NG
T E R NO, A1 H® W 24 kL. BARKE, MnO /ENEAL L, R NO Al Hg'; CeO, NUIiE
AL PR E A A R R RS . MnyCey EALFIZE 180°C FEP W SEIL 97%(1) NO, ZEFRF[22]. BLAF,
T K FE A R R o T 5 8 (UG KA OGN K AL ) (0 FE A7) Pl 2 4 T LR B RO A P o SR, %2
BHOPURBUK R 2, 8% FF 5 4% Fe Ml Co Sz ki mfa e tE[23]. FERBHALE, R Mn-Ce 7t
AT S50 = F 0 N R SR R E AR TR PE(150°C R NOL L3 > 95%), {H & T ILAE & fis
SRR L], AR TR R E G BB F S A CeOs AT I AL e T AN 8 B R 26K AR
7 Mn VEHEN f[24], HIE IR RAGIER B, 7EMKT 300°CHI LA, Mn A7 SR TH K B GR ERER A Fh
FAT W R s 1, e DA E I 7 B R e B P 2B 250 SR s i = s 2 AL B 5 Tl K I 7 AR
HHEEELG (R T 2 R 202 M R T Y S8 =5 (A O L3

3.3. ThEEWRRER K

TEPER (AC) S HAT AV (A AE DR R A K &) BoA B A LL R T A RS . 23T CuO. FeO, Hifi
+ &8 AR R AC BIZE 150°C~250°C IR T 1 N I S B AR . LA AN R . 1, 8% CuO-5%
MnO,/AC 7E 200°C FFEHL T 90%[%) Hg Fl 78%M1) NO (53 [26]. 4k, FIH UV/HL0, & AL BAR
S AP I R S R A F R ERAR, Ar5] N KE & E #841(-COOH FI-OH), His@xitktt s F(Hg' NO
F1 SO ML ZETR B o IXFhAE 4 B AL B A2 0 . 1 35 4B RS e AU [27]

34. ERBIIERMOFs) SHE S REY

MOFs L& H i m LIRS R4 M T BB P, 7ERE AR SRR &35 e A CO, TR I — BT 7).
EECHAA B A, @it 5] NRFE(NH) 8 KB HE ST 181, w32 T MOFs [RBi K MR i fase M.
Bilhn, NHa-HoLs 121 ) MEM-136 TERHUIES 255 24 /NS, 5T EREFIR 1) COL Hi3RAE T, Hiif 52
SO./NO» fZ1l[28]. 4, UiO-66-NHa 5 AN A HUHEZL 5 A REE IR B BUR 1 6 26 (n U) A E 42 )& J7 1 2
AN B RIS SR AN, Ay AL FRRE R fE R PR D ER A TR R (29

3.5. TAkEE FERH R

FIH MSWI H 5K KK FA) ST “ DURIAKR” BHAREIL. MSWI 3B 41 K& TG
iR, HES Cay SiflAIZEMY), @MU EBRESIRITUG, MRS Edn ze 7 Ti) Al ] &
BT SCR HEALT . WFFFEE, FA/Zr-10%MALFITE 250°C FHIBAERCR AR 90%, HSA A i
AL 1/9 [30].
4. — U EIEFIRAR S REN TEXLKRSLFE DT
4.1. ELIESR

AL TEEG R T I (2 S5 AL R S (. PCDD/Fs/B i) EE T — 44, & B BTN B P [ 42
HiARZ —. HEIELSIE T K ePTFE LIS 3T AR B M B & . URBIHA LT IS
B, FA fEERMEE, SSBAME T ISIMIGEN RAERRN . HTRNERDZ EHIT, % T FA
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SR TR I B R A R [31]. B AT, EMMBAREHE Gore® Remedia® [31]. Mitsubishi Hybrid Bag Filter®
(HBF) [32]#1 Topsoe CataFlex™ [33] (¥ 1). ', Gore® Remedia®*%7%: T PCDD/Fs [F{EALAEIR . Hod
F5 AL BT J7 7K PCDD/Fs HER# 2 0.1 ng I-TEQ/Nm? BA R, HIGTH MM R NI, BT FA
IR RN, FITF FA BEUEAL[31]. =3FHE T HBF HAREJERFERN V-Ti #ALF], AMUBEBLER
PCDD/Fs, iEREMLA 2 SR . Hoi T K 1) PTFE 544 HBF M LUAL Giak 41 2bt, i BE PRSI,
IBATIEZ R, BT 51 XHLEEFE(L) 27%)F1 CO, HEX[32]. Topsoe CataFlex™ KW Z 45K, W2
G o AR B8R AR TC T AR A E D0 F nT SE I R AN, MY T B 5T SCR BiiE
NLESFERE, R TEER T EINFAGE R AN FE[33]. A2, TRESCI R WM AL S48 R 40 T Fa e SE I 97%~99%
f) PCDD/Fs 2 FrEF M =R 90% A ERIBLA R,  [FIR AR HEBOR BE K T-Fr i AU BRAE [34].  E3k 3 Fp
TEN L RAR L 2.

¥E: (a)-()MK I AN Gore® Remedia® [31]. Mitsubishi Hybrid Bag Filter® (HBF) [32]F1 Topsoe CataFlex™ [33],
Figure 1. Three typical catalytic filter bags
1.3 Fhan Bl iR LR

Table 2. Technical parameters and performance of typical catalytic filter bags

2. BAENIRRBRARSHSERE

BOR ] LA/ G5 REEHRE AR RE TR AR

Remedia® W. L. Gore PTFE B + fibfbis <1 P%Cglﬁ?}é;gﬂ Di";‘};‘g;ﬁ;i e
HBF® Mitsubishi Heavy Ind.  PTFE £F4E + V-Ti {4671 HEE *f ,ﬂiﬁf)}ff)’ms iiﬁﬁgﬁgzm’

CataFlex™ TOPSOE =GR (AN Z) *é%%%;%; gg;fgfm

T EACIEERAR S H S TERE 2L T 275 3CHR (4] [9] [31] [32] [34]-[40]
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4.2. SNCR 5#HIFHERBIES

TEH N (850°C~1000°C)iEAT ) SNCR A Fy [7] B R LLE i s I 2 1 2% 370 S 3 22 R Th e« 451 2,
1] SNCR RGHIMAEHL . E I & BRI B R ), 76 sl 7 il r= 42 NH; FH T8 i NO, [ R,
PRI ) SO, BB S H SR RE#E 1k FA TR II& B AL (W1 CuCl), BT PCDD/Fs (M kA g2 S5
UEW, %792 AT (R S ZT 65% 1) RS Al % 80%[1) PCDD/Fs Y[ 4]0 BEAN, K8 /KR v i1 T 5 U8
5 MSW P [FEAERE, 1598 i I R BT IE JE R B AR NOL 2R . B TR R BH, 3%~13% V5 R iB ke b e
ML GE T 00, 7EFEAK NO, [ RIS FEmAR A 8GR 1] I, SKEE P i EgS /e — e e Hik s
T NO, “Hiil" e .

4.3. ERFMERE LRI

H0,. O BS B ER Hh 255w A7), ¥ NO 4k 9 NO,, ¥ Heg® Ak A He?t, B e ERE e 5 SO,
FTHCL — R, Bilhn, Fe? 4k i A=A iR 5L B B R 2 m R B SRR [ 10] o i AR B I
HIMEEHATEOE, BORR, HAS S SR Heo SR, 757 K42 S0 70 s & DARK 1 8 4 J& i AN
TR R (AR ) [40].

4.4. WSBETLEFGT)

Br 0 AR A B, PSR OR O A P R A RO B . 0, AU MSWI B B BRI R 3
(200°C~300°C)RF NIFHE 3 (Rl A2 AR5K AR RNEEDEAT R TALEE . MR A DB SR R RRHAEL . 2501k
AR Pk, 3 g J e e SV FH (BRI HCT) 2 22 B D AR 2 PCDD/Fs BT SR MR P AR 1 A Al T
FORBL, FGT KB 5 FIBBHERR IR ) ST S s b, HE R MR = 2 T A3E T [39].

4.5. BREE - EUBESRR

SEGF R AV F AR, I R 37 5 A SR 4 ] SR AR B IR SRS AT . 25 R R 42 )95 e
B, SRk PG RN E 37 77 I ) T4 5 Ak A R A RN A B 1 R A P s TR S 2 R o A SR )
HEEAANA41].

4.6. thEIBRFRRARBITARZF ST

RUE FIR 5 R [FI B PR ARAE MR AL GOS0 R GURAR TR 5 15 4% TUR T TH R 2 2 I AR AR
e, AR TAT VAT B 20 SRR T A2 A0 RLF AOHE ™ B OGBS, @ H ok ¥k, 2 SCR T & )& T
HE R, TR SCR R . NS XY, fin ot B2 2RI AR - A dh
WAL, AL NO, LR AE T 1 CAPEX Z1°4$5500~86100/ton NO, [42]. i fEALELS T )8 T 5 97 it
H AT 30%~50%10 b7 M AR o e 32 B RUATE T U848 R CCRAN i JE A4S 11 3~5 £5) SR e H e 4k
To T H R AR B A . HAH PR E SUNET 2 SCR R 30%~50% [43]. =358 T HIEHE R, K
FH PTFE 2% HBF J5, BT T 57% [8]. 7EEE, £F& 2024/2025 4F EPA #inidk i, 4
ST HOT S G, I R R A g FRAC s (9D BT S ARTR AR Al ik e SR T
[6]. 3T EPA Cost Manual & =35 T.. Topsoe %) M IATFEHE, B TR CAPEX (JOV 85 it
A5 )M OPEX (REFE. Z57f. 4P ) LUHEZR, 8 SO0 bk TR ES 545 S0 R i SCR &2 57
(£ 3)o
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Table 3. Comparison of economic performance between traditional tail-end SCR and catalytic filter bags

2 3. 54 Rifm SCR MELIERZFHEERTEL
A R EE R JE i SCR AL LS ZESoHT
SCR WS M 140°CHNFAZE 230°C~280°C .

REFB(HF YY) W (R S75IR) % 3R SCR B A IEE A T[44].
B rhts P (aS SCR RGN T et A A AL PR Z (I BH 77 5
s (+1000~1500 Pa) (+200~500 Pa) AL BE s T A

et K 2 TS g e 2 VBSOS R
ﬁ*ﬁ%]ﬁ% {E'f’t%ufj‘ 3] 3~5 EF‘ {;E%%% (A1) 3~5 ff'f %*ﬂmw*ﬁ?&ﬁﬁ%ﬁ; Eiz'glﬁic
I R HK/IRE HK/IRE HFERAH Y, BT NSR.

TR, RE A IER BRI A L) N B R AR 3~5 1%, (HHIEBR 7R SCR I <
FIEERE. XTTF— & 500 vd FIBEREN", & 20BN 150°C kA 230°CH &5 @il & I KRR A,
Al OPEX P#{RZ) 57% [45]. &BF A /b i N, T 28 8] 52 B B JE % R BB BR(NO, < 50 mg/Nm?)
IR SasEmiH, WhRIEOR BA BBV E Rk EA S R, XS a2 i iene
RBITHANR A (>3 ). A, WEREHTHEKME SBOERAE | SN, FHa 4 a8 AR R
## SCR.

UbAh, 2 XK GBS HAR T, MSWI HL T IEZ A “ ik ” Wi . Gt R Co, R A
IEFEIE L KIS AR MOFs A1RE, A5 B 7E[R] — W B 3 A S B 5 iR FE i 5 CO, #6281 RN,
P [ A 1 k2 28 48 R BRI RE B FE(IN Topsoe DNX-LT iR MEAL ) ELAEREK T MSWI | (K E I H
R, [AERREAC T R 2 E[33].

5. NSERREE T AKX B S X R

MSWI R R AERS A5 P S B S HEEOE bR i) £ 2R A - 51N AL AU A BOR BEAT SERH LA 4%
i, AT RS GBI K.

5.1. XBTEHK

JUAE S = Y B AR R SIS T R, (R A 1) T S FH AT TN 22 B DGR TRk
o TG, WEENALE T IEIT 2 AR B3 S M EH 2 7, 00 =% KRS
(>30,000~50,000 h~") LAY B AN B RR i) 500 e A BEARE S ) S i& 1, T Tl fAd g8 SRIE AT T AR JE X
(<1 m/min) 3 HEEH X, X35 = BREAL S TR A2 B 5 bR RS R 5] IS E TR
[46]. FLIR, (A ZAEBHIRIAEEIE— S0, DA BObRHEA IR 32 A SR AT L I A A P AR
PR, A DU, MSWI T4 R stk i 2k 3 Ak 27 - HUARONCEE 24k, BDHLARIE 2 5 8O AR 2
. RVE RKIE4T] (48]0 ULAN, MSW HE (1 il 5438 2 45 ok Rt s i oy R i st , 56 1) 141 H 11 CEMIS 4%
LS PID (LU - B0 — Bldn) s oo 42 A7 0 S 2 PR R TR0 J, e DA SIZRSF B2 R T4 52 9 5 i 1Y 5
JeWIIR FEIEAS, T S EOE SRS 2B IR« HEBOER AR B2 kR AR T 25 ) i [49]

52. FEXR
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5
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AR R AR N B R R P S R R — . RO B RN GREER . 0, FEAL SRR R,
T AL AT I RTRE NOL 2E BUR FRAIK 8%~24%, [N H& il ke, MIESKIER T 5 8 L R %
MIBAA[ 1] BEAh, FE L R U Rk, S5 CFD BEUNIFELR ST Bdls, w7 SE B AL
FRE LA JEAR IS ZE AR AN M3 A B . IR AEATIZZE N DA RETIN AL R B e %, 52 SR DL AT
TRV A SRS, 8 G SR R A AR HEIL 501

5.2.2. #1285 SN PCDD/Fs HEMS H R EHRT

% PCDD/Fs {ELZ IS DB AR Z B 2SI A iy ELTE 5 PR A0 1) R, R AL 2% 2 2] Sk 4240 % Wiz
1T¥09E 5 PCDD/Fs HEBZ (A AR MR 5¢ 2R, BT A SRR AR, o 4 BT I 70k . Yin 25
[STIFRH A E MSWI (1) 12,164 20 CEMS W%, XFEC 1 o3 mt . BEHLARAR(RE) R BESETHRIAT L
P25 55 4 PRI PCDD/Fs HER G AU 0 TN PERE . AR FERIN, RF ABUR I AE, LTk
W AGHR . F1 08O E R 5EF] T 89.26%- 94%- 93.16%F1 93.58% . HFF B E 14 #7 Al 1 il sy
Spridt— IR, CO W5 PCDD/Fs HEL B AH <M i 5 (Pearson RECH 29.69%), 24 PCDD/Fs bRk,
CO MWPEF33EIM 101%. XERYEG=Z BHENTFBN, CO. J AR & I #)E PCDD/Fs
AR BRIENS, v MSWI | B T A St Pus R k4 . 7EE WM Ak RUE I, Liu 5%
[S2IA VRS IS 1T 280, 5N THR Tt S E B R, M8 7R TIREERMA XGBoost [H]H
() PCDD/Fs HEBCHIINAEAY o B Fe 5 TR [ . HAC S BRSEH X 1) MSWI ) #5dls, #R 70 1 A8 IP 2 (AOI)
AbEREE ) K HIZ AT [ % PCDD/Fs HERBR B ORI . 455K 1, AOI 55 PCDD/Fs /¥ 52 15 3% IEAE,
B 2 TH B PR B AR 7 i 08 4 52 A T I B8 vy B HE RO s T b3 R 70 I 2238 47 R ] ) 52 474 5
TXAESE 7 UL RN S8 2 T x40 PCDD/Fs A= BUAIRMRAE F o 28 LRTIR, HLES 2 S AR e g 3
T CEMS %45 5230 PCDD/Fs 8 bn (1 SEif TR, I R gh & Witz 48 2 20K F I HE G 25 0 Fl 4 R
SO RS R, R RRSCELE R IR R F A L T A,

6. FRERE

MSWI S 2 15 4 b [R] B PR B ARARER 7 A8 T RE UM K i v 21 1) I FE 4L 1l 5 44 KL Th REAL FE AR 1)
HUWE T ) AIKiR V-Ti %5, Mn-Ce S0 K DhREAL TR B0 A B4R 58 1 RN T 11, A3 7ERR 2
it % S5 R IEL X (150°C~200C)REAT IR BE AL RN AT B« % NO,-PCDD/Fs 324+ . He®-HCI B[] 1k 2
FOWALER RN, 185 T X REMEATIAN 2 AL R PR HE BT o AL IESS . o a4 77 B[R] SNCR
SRR OAE TR FUER 7 H SR s PE, SO B A SuE I H IR 5. ek, AT RALIE HIFIMIK
TREE A P RlEKs 5140 MSWI AT HE N B B AR AL BT I AR . 75 248 I, AL B P 4
FRERERE . R T KBRS 52 1 LA S MOFs 5535 AR} A Ab 1] £ R ASATS =2 il 20 2732 S B &
K, MERET HBEAERRMENIT K. B4R 2 MR BLE) 77255 BIfET DL AR R ik - V5 0 R4 i) S g
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EL£mAB
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