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Abstract

The TS-1/H20: zeolite catalytic system has emerged as one of the key technologies in green chem-
istry due to its environmentally friendly features, such as mild reaction conditions and high atom
economy. However, the exact structure of its microscopic active centers and the detailed mecha-
nism underlying the role of solvent molecules remain central topics in current theoretical research.
In this study, the effects of solvent molecules (H20, CH30H) on TS-1/Hz0: zeolite and the formation
of titanium-hydroperoxo intermediates was investigated using density functional theory (DFT) at
B3LYP/6-31G (d, p) level. The calculation results show that at the T10 and T8 sites, the framework
Ti interacts with Hz202 to form two titanium-oxygen active intermediates, namely the five-mem-
bered ring Ti-n1(O0H) and the three-membered ring Ti-n2(0O0H). Solvent molecules can stabilize
the active intermediates by either directly acting with the Ti center to form six-coordinate com-
plexes or being adsorbed via hydrogen-bonding, with a more pronounced stabilizing effect on the
Ti-n1(0O0H) intermediate. Further studies on the mechanism of propylene epoxidation showed that
the Ti-n%2(0O0OH) active sites with a three-membered ring structure had fewer interruptions/bonds
in the reaction, and the corresponding reaction energy barrier was lower, which showed higher cat-
alytic activity. This study reveals the solvent effect and active center characteristics of TS-1/H20:
zeolite from the atomic scale, which provides a theoretical basis for the rational design of high effi-
ciency titanium silicalite catalysts.
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1. B

BREEZ T TS-1 2 ERR T B # MFL 7070 28 (0 7 M5 20 10— R85 7 0 70, HRELE
LA H2O2 JiE S AT FRIVBAR o S 28 Al LA CIn s S 3R A 1] R 24k 2] B SRR AR 3155 i
e, HRPOIREA RARAFRA B RK, ERBERTEF 5SSO0 TR RIS, HBRHk
BN IR R UT TR P A AT ) S 9

FET AR, Ik S A S B AR 7 PR AT TR I RPN S B R e b 3 L I S Ha 00 (1
AR HRBA REPER  KESCIRT LR, BT VR H AR TS-1 AL AR oA S S i rh 2 B
w41, FIa, FERPIEA 1- TR A AL b, TP IR 5 RE 2 35 S TH0 S8 M FE A Ha00 A 3151
UK, W ARE— R TR FIE R ORI . BB S AE R, FRE AR o 7 I I R A B 8 i
ABEAE AR E IRBLAR R ) HaOo Jerh (i, HREE LS 5T HB IR, K H0, BRI Re L2 5%
B4 13 keal/mol, AT ESUAR [ B A2 5 SR AP (6] X — AR 1 - JIBE T ¥ A e i g # e oz
B BPRBE AE M L R, R R RO O BE AR T 21 T R AL 2

VAT R AS TR N 5 A S S P AN A v O 25 A B DDA 26 . KRIIBLSR, TS-1 5 HL0, fEH]

][l

SEFC AL SRR (Ti-p(O0H)) [ 7] IR HIF 7E 52 BR T8/ AR R (41 Ti(OH)a), Xk LIS B 7>
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TR AL BRI, VA FRIE FH VA AN A THI (8] AT HAR B B9, SR REARE TS-1 F#AFE+
JCIAFLIE(1OMR) R RS RS (G 144T) -5 e AE AL B IR, W T HER R S R B T S Ae e
PERIRE 22 B OCEZL[9]. BUAL, AT SRIWT U MEAGTR & R S T SRR, ol s i G i kA
RIS BRSSP a AL, RINA R T SrE RS . ANRRLH E S A LI TS-1 KB R85 ) iT
AW, X EAPRIE R A 1- S R R I B R T A e, AR TE TARAL T 3 M 5 aT
PN I A% A2 10]-[12]

R LRI, IRANERME TS-1/H00 M 2 IS5 53 -5 30 Ve A o IR AR LA FE LR, 2 DRI ML A 1 e
SO F RTINS, Tz e ek &i— 0 kg N HBEERAER L. A OETHE
ZRERTIE, WE T I ST TS-1 B AR MIEEAY, RGH ST H,0 A1 CHsOH & 714> F#E T8
T10 JEMEAT A5 _E IR 47 9 B Hox Ti-n' (OOH) A Ti-n' (OOH) P Feh ik 200 P rv 0o Wi - 25 R AN RS 2 1k R 2
FELCHEEA b, 30 LN N RLRY), VEAIIR L T 7EA VA SIS PR ot B3RS A 5B R oM AL |
HESENERNEELR, BEMNE TS BT Z RSSO YR AR, Iz ik Rk
FFER RSO, DUy SEIRRT FE R Tl A A TR L IR S 3 e 5

2. HEARB
2.1. HRBGEEY

TS-1 T A B IR SR, RS I & T 15 07 R TR e B se g Mk AT se A idk, Rk 4
FAVSEHINT Ti AL TS R[13] [14], FH H BIRERLE o 10t i AR 2540 R B C 2 388+, F H
DA Ti JE 7 H O [l A0 S A DU J2 1B SR - ha iy, LR B (R AL BR [ 8 IR A B . 3 o, SR B 4R it
ONIOM HERIHIF SR A AL AT TF SR8 [14] [15]. ARMERT AR — RV R, AT TS-1 4347
ARG R LA T8 T10 A7 4 OB 35 & BBl G2 4L R T AR Y, B2 K O JRFI5M H IR
TREFH T AARENRR, ZEEE Si-H KN 1.460 A [16]-[19]. BB S H,0 20T K AK
fife SN AE = R [TI(OS1)OH KRRt 5 HaOo 73 T EIE M0 45k . R T8 T10 fr s A A W,
Kl 1.

(a) TS-2(OOH) (b) T8-'(OOH)
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(c) T10-*(OOH) (d) T10-4'(OOH)

Figure 1. Structure models of active center of Ti-peroxides at T8 and T10 sites in TS-1 zeolite

1. TS-1 5F0% T8 F1 T10 (sE M R

2.2. iHEGE

JITA T+ 5 4R 4E Gausian 09 FEFFAEL[20]H 52 . 7E T8@38T Al T10@38T M Al e, S HafI fh i FH 2 7%
Z R (DFT), BT JETH7E B3LYP/6-31G(d, p)EE /K TiE4T FHEAT, XA G T 77 B O 28 & 4k
47 BSSE K2 IE[21] [22]. FEMAG S 4519 |- 56 B B SR BEELE (NBO) 1F 5, NBO 43 #T#E NBO 3.01 84T .
o T A SCH FIT A WP RE A S A TR AR S5 B0 TS-1 4307 375 28 v o R 75 750 4D A R Rk 2 S W A )
TS-1 43 Fifiim Mk rp O R ) B B 5 ¥4 7 HoO. CHOH B2 AT, 15 B B W GE 40 /2 F BSSE %
1E. oAb, I IEFR A S SRR S AL B R TSR PRGN 5 A U A SRS 2R 1) 5 B8 B (Ers) PRk 25 40 1 U 19 E B
(Ecolite) FURPD 73 F I BE B (Esuwbstratc) s P AR AL IEWR R BE DL A S AL RETHERL A 2R
BE =E,.(AC)-[E,(A)+E.(C)]

Hodr, R REE 77 HyO A1 CH;0H. X B ACLA FI C 23 AR I 45540 T B 70 (HL0 BY, CH3OH)-
DL TS-1 50 F i At 2544
AE,, (BSSE) = E,,, + AE (BSSE)

ANIH, AE (BSSEYRFHLMAESRZ, HHAEME.
AE,=E.—E

zeolite

-E

3. ER5i1i8
3.1. T8 #1 T10 friEM b SiaFR MK &SRR K

E T B 4k Ti A F E VU by, N VUECAZ[Ti(OSH) Wl . FRSTHE R, Ti fECAz % Py
I3 FLE S I R RE B bk i 2 T AT HI[13]-[15]. 24 TS-1 2 10 5 HoO, FE R SEE M b O S5 R I, Ti
REFEAL, K Ti A a] AR B —ANEFIBC AR AR A SO 45 Bk 76 pH i i S E R . H.O
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(AN TFIASE A5 AT P H O W B 7510 20 7 T RSO B 285 5 WA B TR B JR iR 45 4 o 56 1 RS 2 43 il 31 HE T8
T10 A7 SR B8 B P 38 50 TUAM 25 ¥ S 40

(a) T8-#2(O0OH)-H-0 (b) T8-7*(O0H)-CH3;0H

(¢) T8-#2(OOH)-BH-H0 (d) T8-2(O0H)-pH-CH;0H

Figure 2. Optimized local structures of adsorption complexes of Ti8-#*(OOH) species with H>O and CH3OH
2. Ti8-7A(OOH)#1# 5 H.0 1 CH;0H WM& &4 S ERLEH

Table 1. Some geometric parameters of optimized adsorption complexes of Ti8-7?(OOH) with H20 and CH3;0H
%= 1. TiS-yA OOH)## 5 H.0 1 CH:OH IRHHE A MM L ERER 2 LTSRS

Adsorption complex  L(Ti-O(Si))/A  A(Ti-O-Si)/(")  L(Ti-Oq)/A D(Ti-Op)/A  D(Ti/BH-O)A  D(0s-Op)/A

Ti8-n? 1.798 135.6 1.879 2.142 - 1.467
Ti8-7*-H20 1.829 134.6 1.879 2.188 2.378 1.456
Ti8-#*-CH;OH 1.824 135.6 1.879 2.216 2.414 1.459
Ti8-7*-BH-H20 1.804 135.8 1.864 2.086 1.597 1.474
Ti8-5?-fH-CH3;0H 1.805 135.7 1.863 2.080 1.557 1.474

L: bond length, 4: bond angle, D: distance between atoms.
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(b) T10-%(OOH)-CH;0H

(¢) T10-72(OOH)-H-H>0 (d) T10-7*(OOH)-pH-CH30H

Figure 3. Optimized local structures of adsorption complexes of Til0-7*(OOH) species with H20 and CH;OH
3. Til0-72(OOH)¥I# 5 H,0 #1 CH:OH MR IR &4 S ERLEH

Table 2. Some geometric parameters of optimized adsorption complexes of Ti10-#*(OOH) with H2O and CH3;0H
2 2. Til0-72(OOH)#1#5 H,0 #1 CH;OH WRMHE &4tk BRIER Y L& E

Adsorption complex  L(Ti-O(Si))/A A(Ti-O-Si)/(") L(Ti-O/A  D(Ti-Op)/A  D(TUBH-OYA  D(Ouw-Op)/A

Til0-5? 1.798 132.9 1.884 2.175 - 1.469
Til0-7>-H20 1.826 131.9 1.873 2.249 2437 1.461
Til0-#>-CH30H 1.833 131.2 1.897 2.343 2216 1.462
Til0-#*-pH-H20 1.819 133.2 1.875 2.085 1.563 1.465
Til0-5>-pH-CH;0H 1.809 132.8 1.872 2.119 1.622 1.473

M 1. L2 BUEH, 2 Ti-p?(OOH)TE M O &5 F W It HoO A1 CH;OH ¥ 75, Ti-O BEI-F- 358
Koi 1.798 ASEIME] T 1.805~1.833 A Ji[H P4, WK B J 5o R 46 K (1 s e i A 1) 17 o Ji 7 JA BRI AR 28— )2,
Bl Ti-O-Si “FIJ8E A 7E 134.6°~135.8° (Ti8)Z A Al 131.2°~133.2° (Til0)Z[a], {H /KK E XL #i Ti-O-Si
SR B AR S B K AR 1.7° . Ti-O, FIE KV I 7E 1.863~1.897 A, HARZ 23135 AL R —50 Ti-04 1)

BRI FEIE 2.080~2.343 A, Ti-L (L = H,O, CH;OH) ) Ff 2576 [l 7F 2.216~2.437 A Z [f],
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3.2. TRFINRPHEIIR B RE T B

M 3 AT LAE B, TS-1 43 1 T8 1 T10 ALY 7 BREEUTE A 00 544 45 W 7] 43 IR IR B e 0 72 A
BSSE £ 1E J& W Pt e 4R B 2 BAR, (BN M8, IR RS VAR T 2 Ti o rE 8 % ERE R
R AHSE, BRI YRS VA SR RO AR B IR B R KN S B SRR TE A i TR TR AL DA R
(MR B B DG BARKE, BT TS-1 20 FIfiFLiE RSF Aid i rpocs i i e g i i sg e, AT B FLiE
(1) T8 457 Ti 0o 575> T I A F o HoO > CH3OH, S8 AE WL AR I o CH3O0H > H,0; T 1F
FZALIB ) T10 A7 Ti FhO 5357050 T (W HAE FI A CH3OH > H,O, B 1R W B4 I 4 HaO > CH5O0H.
XFFIESZALIER) T10 A7, FIEEZEH T CH;OH 20 FARFUR T Ho0 401, A M bt A8 Bl 4L R 1
ARSI, SEORM ARG K.

Table 3. Adsorption energies of solvent ligands on Ti8 and Ti10 sites in TS-1/H20:
= 3. TS-1/H20: K% Ti8 F Ti10 fIARF H20 A1 CH>OH &3 HI K B &E

AFE.qs/(kcal/mol)
Ti-peroxide complex B3LYP/6-31G(d, p)
uncorrected BSSE corrected

Ti8-#*-H20 —15.86 —6.15
Ti8-#*>-CH30H -13.72 —5.20
Ti8-n*-pH-H20 -17.52 —-11.08
Ti8-72-fH-CH;0H ~16.98 -10.81
Til0-7>-H20 —11.08 -3.19
Ti10-7*-CHsOH —18.96 -11.09
Til0-52-fH-H20 —20.89 -13.83
Til0-5?-fH-CH30H -15.63 -10.01

3.3. NBO BT 47

H SR LIE 73 T (NBO) F7 72K Lewis &5 44, X401 BV BRI BGHAT /307 - Ti J&FAE N Lewis BRH L,
FOE bR, WA AT SR T HWRMHER . NBO Wit B0k bo Bl 0p O, BT,
W Oy ASEHE T O, O, JE 7 1E FL B Ry, KRR Tk . %2 4 B 7 T8 T10 Az sivd 0 Ti-n*(OOH)
SERIE Y IR 1 NBO i fif e MR RTCAE H, Ti JE TR IEHATA T8 > T10 A7, Jt LAX F7K 7 Fixff
(/N1 BB RE 719 T8 > T10 A, X 57K 4TI B RE2 — B0 X T CHsOH 71k ui, HAKR
KF H0 431, HIEGZFLIE R T10 A7k S0E 1 O S R B 42 )74 S s (i A AR E 5 SO0 B R
Ko WAk, Xk SR AR SR U, Hy (O IE Bt AR — 55, U R B B ) 2 ) PRS0 1 B i
BT 0N, FTUVZINGS T HoO B G WM . O, AF Aok rig Ly, HLIEHMN T8 > T10, PiAMASH Ti
FLLIR Y CH3OH 2 G613 O, fIE FL I FRAE,  WRF HoO 2 T35 O, I 1E HLPEBE A FH i (T8 AL T 0.002
e, T10 A2 F+iE 0.006 €), T T8 ZBEAL B WP XT O i IE FEMEFZ I EL T10 /)N, 43 51125-0.001 e #1-0.003 ¢
(T10 47 5-0.006 e F1—0.012 ¢).
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Table 4. NBO charges of and Ti-#? and adsorption complexes in TS-1 zeolite calculated at B3LYP/6-31G(d, p)
2 4. B3LYP/6-31G(d, p)itBEBEIRY TS-1 HFiFT Ti-n? LURILHE -S89 NBO BT

NBO charges q (Ti)/e q (Oa)le q (Op)le q (Hp)/e
Ti8-n? 1.494 —0.347 —0.479 0.539
Ti8-#*-H20 1.490 —0.345 -0.473 0.533
Ti8-7*-CH;0H 1.509 —-0.371 -0.477 0.533
Ti8-*-fH-H20 1.499 —0.348 —0.506 0.541
Ti8-#2-fH-CH30H 1.499 —0.350 —0.505 0.541
Ti10-52 1469 —0.354 —0.478 0.524
Til0-7>-H20 1.467 —0.340 —0.476 0.518
Ti10-7?-CH;OH 1.468 —0.381 —0.496 0.525
Ti10-5?-fH-H20 1.462 —0.359 —0.486 0.540
Ti10-5?-fH-CH30H 1.481 —0.366 —0.505 0.539

W IR A RE T KDL, AE Ti8-n*(OOH)45# ™, Ti LA 4p, " HUIES Op 1 2p, P EAHE
YEFS, BUIBREES 9N 32.15 keal/mol (Ti8-5%), 36.88 keal/mol (Ti8-5*-AH-H,0), 37.77 keal/mol (Ti8-7>-SH-
CH;0H), 11.44 kcal/mol (Ti8-#%-H,0), 11.89 kcal/mol (Ti8-72-CH;OH), I A fic ke, 2% B Ti8-#2(OOH)
WEPEHO AR ) Ti A B TR PR S5 .

34, FRFELRE

ARE23 T BRI TR, 2 LR B LR VS P Lo N PRI B BB A A—2.11 keal/mol, SR M IR B £ 3%
e o B PR B A R D9 —2.98 keal/mol, MR BIHAE Ti Hhols b, IX 6 B BE#7E 4.0 keal/mol LA R, PR
BFRES /N, ABE PR SN HLEE h A R W B AR T I KR, X5 Sever SF[241IA 82 —E, H,0, 573
T Z TR RIS A SR 2B O o £ SRR, WA S 5, 500 BB 9 BRI, T
HECIE R g, IR B RE AT 2 AN, P L, A OB 9id tE 0 5 B ke 7. T8 fi#
SRS EAS A MR ] 4 Fi, T10 4555 A0 T8 AL ISR & [ B 1 I JEAS S5 M B, J LA 454 5
BT 5.
Table 5. Geometric parameters of transition state for the epoxidation of propylene on different active centers in TS-1/H202

A
5. TS-1/H:0: R AR EEMS 0 ERBRENTESEHEHA)

Epoxidation Transition-State
catalysts Ti-OSi Ti-Ox Ti-Op 04-0p Ti-O, 0-Cl1 0-C2
Ti8-72 1.812 1.905 2.011 1.762 - 2223 2.224
Ti8-! 1.821 1.991 2.022 1.810 2.263 2.260 2.151
Ti8-72-H20 1.826 1.944 2.036 1.776 - 2.171 2.329
Ti8-72-CH;0H 1.828 2.018 1.987 1.767 - 2242 2.229
Ti8-7-fH-H20 1.827 1.911 1.926 1.774 - 2227 2.177
Ti8-5*-fH-CH;0H 1.822 1.906 1.943 1.775 - 2.178 2.248
Ti10-5> 1.815 1.933 2.008 1.767 - 2.175 2.254
Ti10-5! 1.845 2.115 3.084 1.774 1.922 2.440 2.175
Ti10-5*-pH-H20 1.833 1.929 1.939 1.781 - 2.163 2219
Ti10-5*-pH-CH30H 1.830 1.938 1.935 1.767 - 2223 2.246
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(e) Ti8-»>-fH-CH30H-C3Hs-TS (f) Ti8-'-C3Hs-TS

Figure 4. Structure models for transition state of propylene epoxidation on active centers in TS-1 zeolite

4. TS-1 S F AL ERBIT AU ESERRE
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Ti8-1 35 1 R 5 P I S N AT VR AS I 4589 7R, Ti-0Si /R Ti-O 8K 1.812 A, Ti-O, HI4E KN 1.905
A, 5RMNZ AT RIEINT 0.014. 0.026 A, Ti-Og KRN 2.011 A, 5N ATHEIELD T 0.131
A, BIEFKAFTERI ZZAE TR, Ti8-n?-HoO i M .00 5 I S B2 [ I IS B 454 1, Ti-O, BN 1.944 A,
Ti-Op KN 2.036 A, 5 Sinclair 5 Catlow [7]1H5 1 TS-1 43T i i P4 O F0 P I PR 8 s I g 4 SR 3
A=, Ti-ng' T SRS ES R, Ti-O4 K Ti-Op MK HER Ti-n? 251 15
KK, Xy Vayssilov 2257 E 4R 8. Ti-g? imHEHOER B ESR, Ti-O, FIEKB T
0.026 A, Ti-Op MBEKAERE 7 0.203 A, O,-Op MEEKIEM T 0.295 A, 0,5 C1 1 C2 HyFR &M,
O-C1 MIBEES y 2.223 A, O-C2 MIBEES Ny 2.224 A, Ti8-p" i& DA G AR, Ti-O, HUBEK B hn 1
0.197 A, Ti-Op MBEKAERE 7 0.004 A, O,-Op MEEKIM T 0.319 A, 0,5 C1 1 C2 HIFR i,
O-C1 IBEE N 2.260 A, O-C2 MIBEE N 2.151 A, VL EEIE A 280, Tis-n' i PO B Ti-O, 1 Ti-
Op HIEEK AR EE Tis-n2 5 M K AL TG IR, Tis-' it | O-C1 A1 0-C2 Ky T B A fb ek,
i Ti8-n" V&1 rh 00 5 P OB TR G VS I, Ti-Opn 04-Op H-O, [HEK R 718 N B 2 ek, O-Cl1.
0-C2. H-Op MEKB W40 5 EL R U, 7EIX AN OB FE 77 2K B i RE RN AL R B, 1T Tig-n i M
O B BRI ARG B AN T Ti8-n! iR O FEK AR, BT LIS RERK, DL B&E AT, Tis-
7?-O0H Vi P A O VG AL BE 22 /N T Tis-n! iETEH O . BAR Ti8-#%-H,0. Ti8-2-CH;0H & A1 00 ) Ti-Ogs
Ti-Op IS E FEIAS K, {HUZ Ti8-n G P v Lo R PR 7510907 10 7 A 72 )7 BH 55 R 31 1 5 20 B % v o

3.5, WESEEE ST

FEVHET AN R A BALYP V2 B, XA BC AR (Ti-n2) & 1 1 b0 5 TR I IR Bk B i AL e 22 4 1]
5 B4 A 5.05 keal/mol (Ti8-#%), 6.95 kcal/mol (Ti10-#%), 10.26 kcal/mol (Ti8-5-fH-H,0), 9.11 kcal/mol
(Ti10-5*-pH-H,0), 6.97 kcal/mol (Ti8-;*-fH-CH;OH), 8.06 kcal/mol (Til0-7>-fH-CH;O0H), 16.06 kcal/mol
(Ti8-#*-H20), 18.07 kcal/mol (Ti8-#>-CH;0H), LA 2555 Wells S5[26 ] 115 A M PR 4840 s B2 1) 45 SR A
—2, 5 Sever & N[24]1HE 45 FBE A FEAK T 505 BLAR(Ti-n') & 7% 1 0 5 T IR A OB T AL g
225354 12.37 keal/mol (Ti8-'), 21.87 kcal/mol (Til0-4"). {HAFERIIE, Tis8-n' 5 R EA B )it
WAL, HAAIAR R T Ti8-n2-HoO 454, T Til0-n' i kbt 5 IS I AL S N & AL RE B S s T
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Figure 5. Energies transition states for the propylene epoxidation reaction relative to the separated reactants
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LRI . A7 T BEALIER T8 ALkt HoO MIRCALME P BE 58, il T IE5ZFLIE ) T10 AL CH;OH 1)
T AE W B BB A, 3% 5 L RS R 2 ] SRR RGN, 5 B YO A AR A VR 22 75 0% . NBO Hifa it — 20
7R T Ti O 1 HLPE BT L O HLART 43 A1 525 SRR AR, Do BRAR A 770 R A2 FE T S5 M B (1t 1 4k o

3) MO R B HLEE : PRI AR S HLER K g 22 TR B, B = IR S5 MY Ti-n(OO0H)
TEPE O AE R N W/ R H TR D, AT R AR AR FE TR /DN, FEX R SR BE 42 (~9.22 keal/mol) i FE K
F Ti-n'(OOH)H12(~29.24 keal/mol). i, Ti-z2(OOH)Z TS-1/Hy0, 14 F e T 545 A B s id kvt
BRSO H @ AR B 2 5N — M= A, FEC Ti-p?(O0H)H U I 11 Js I R 22 8 5 T e
B R B8 HAR BT Ti-n' (OOH) i PEAR 57

4) FIRTR 3R S AN E TS5 B RUZ B T TS-1/H20, 74 5 1V 77 SON AR P55 354 A O AT
B T Ti-n2(OOH) NI Fh o Z IO EME BT itk B AR R 2 T Ifi (A 7R (1 1 38 B H R A 4 -
KRB A IR AL S E R E & H oo, BE AL TS-D)LME#E Ti-p?(OOH) ML K5 K
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