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Abstract

To address data hierarchy complexity and computational redundancy in smart manufacturing ca-
pacity prediction, multi-level production data from a cigarette factory is preprocessed to determine
optimal modeling granularity. A shift-grouping method with linear interpolation resolves time-
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series discontinuity. A lightweight forecasting framework integrating Long Short-Term Memory
(LSTM) and an attention mechanism are proposed, incorporating early stopping to prevent overfit-
ting. Results demonstrate superior prediction accuracy and stability over benchmarks, significantly
outperforming traditional empirical methods. Fundamental causes of limitations—including multi-
step error accumulation and reduced generalization—were analyzed. Systematic improvement
strategies are formulated based on this analysis. The LSTM-Attention framework ensures predic-
tion precision while offering strong engineering applicability, providing vital reference for produc-
tion optimization in smart manufacturing.
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Figure 1. Architecture of the LSTM-Attention model
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T2 R A AR G R, AR R B AN R MBS S B R . H IR S S SRR A T L
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3. SRS 5

AT 78 SE 5 A% A Windows 11; CPU A Intel i7-1065G7; GPU A Intel Iris Plus Graphics; Python 3.7;
Pytorch 1.13.
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Table 1. One-Hot encoding results (First 5 samples as example)

1. WAYRISALIREER(LART 5 DMEAR )

Sample ID Original Shift Shift Class A Shift Class B Shift Class C
0 Class A 1 0 0
1 Class B 0 1 0
2 Class C 0 0 1
3 Class A 1 0 0
4 Class B 0 1 0

Table 2. Feature construction results

2. FHEMBER

Feature Type Specific Method Feature Name Purpose
Temporal Features Date Decomposition Year, month, day of week Capture periodic and seasonal patterns
Lag Features Historical Value Production_lag 1, Produc- Model temporal dependencies and
J Extraction tion_lag 2, Production lag 3 autocorrelation

Smooth short-term fluctuations and extract

Trend Features Moving Average Production_ma_ 3, Production ma 7 .
— 0= - = medium-term trends

Rolling Standard

Volatility Features Deviation

Production_std 3, Production_std 7 Quantify sequence volatility and uncertainty

3.2. BEEFINSESIEE

AHFFEHEE T HET LSTM-Attention FUVRIE 2SI, RS54 7 LSTM (I 5 @A e ) FIVE =
BLHI R R B 3 . BREALR FHXUZ LSTM M4, Fass i udi h 256, J=IE dropout 4 0.6, H T2
H 8] 7 21 ) R AR G R o EUEEEAE b, BINIE T A& 2 003k SO, @i 2% 5 5 a0 Y B
BERE, ZhEERA LSTM fith MIBBUIRAS , 1Ym0 SCE I 155 2 A SR A 77 o B2 (10 % Hh 2R
Wi Z AR MY, TR ZE N ReLU 3G BREUAT Dropout 1ENIA, fx & H TINS5 5, i 0l 45 S 44
T I AF N (R bR AE A S B AT T AR e, WKOR 22 SR AR B RO R AT PRl , A DR VPl 85 SR I S 3 SCRI AT Rt

Z R PR BE R T REAAE R A, AWEITIE A Huber KRG = LOWE NI B AR, Z8K AL
S B A R SR AR Adam B, WIURTF ST Z 0N 0.001, AR AECN 1x 1073,
DL I 0L E B 5 o I ZRid 72 P 52t ReduceLROnPlateau 27 ) 281 £ 5 0%, 436G UFEE R2FEFRTE 5 4> epoch
WICHGEI, 5] 4% 0.5 MR AT 220k, S/ ST 2RI 1< 107, [FI, B ERETHAR R K
JEECA 1.0)B (A B NE A, R A2 T30 UESE RAEAR I RS HLE], MI0IFEE R27EE4LE 15 4> epoch
WA I ECERT, Zb IR 2 I FORAAPE R S L B T 28 . IR A2 5K epoch 0N 2560 BRIEASH
Wk - Bk - WK 5341, AHH 7038 K FH ) 8] 7 5158 X 38 F(Time Series Split, k = 5)%5 1584 ()92 44 14 g
ITHE—2BI0E, BRI R AR PE RN PTSE 1 o S0 UE SR G 78 7025 R 1 I 18] /3 27 500 RO B o At 1,
Yo 7 AR G848 ISR AT B T3 B0 B I R i)

3.3. FMREEAT e 4R
SEIGAE T 4 ASSCBE RE TR AR XTI B BEAT VAL, 51877 ¥R 2 (Mean Squared Error, MSE). “F-¥J 445 i%
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MAPE =—) |—/— 4
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Z(yz'_j/i)z

RZ :1_ tznl (5)

_\2
2 (% -7)

Horr, n RFEARL y RH I MERKEERE, 5250 i DR, ?=%iy,. NESHAARIFEAY)

fi. MSE. MAE. MAPE #F /R TMNME 5 B IME 2 MR %, ElN, R AT RE Sy, &
= . MSE 5 MAE Il S 46 %H% 2 0 A E, MAPE #8 R AHGHR 2583, R2ATEAAIN H brAs AR
HERIRRERE 1, (HREE 1 RGN . PUE L FPB R 3t T 555 .

3.4. jHRASELE

NESAE T HRT7 V5 S A A R, AR TE R T R G RLSLEG, I IR0 R R B oG s 2R A
B AL AR P RE R TTER . T BLSEZIREE R N 3 BT .

FINFHE TARSS , AL MSE M 1134.47 KIEFERZE 705.65, FEIRIA 37.8%; MAE M 27.85 F4 % 20.34,
BGENRE N 27.0%; MAPE M 10.17%fE46 2 7.75%, $27F 23.8%; R2 M 0.3017 $&F+% 0.5656, ffFE 52 RE
JIREEN R . X — 25 RIRIE T I AP AVRHIE TR R E A @i M A S RFAE . oA TR S5 2
YEPEAE IR, AL RS B L bR 41 45 0 S ST 8] 7 5 R P E R AR O 2R, T i S S IR

FEFAE TR LAY 1, #FHE LSTM #7455 LSTM-Attention HE AL PERE 2 7, 45 BB RVER A ML ok
T RESR T . SINERJINLEISE, MSE M 705.65 #E— P KE 624.13, 3% 11.6%; MAE M
20.34 4% 19.90, 2T} 2.2%: MAPE M 7.75%F% % 7.36%, B3 5.0%;: R M 0.5656 $&T+ % 0.6158,
B G RE I FR B ot . VE R IHLEI A AR T R 328 70 FO I 3 B AOAE, S B AR 7 Fo0 i 2
rH R ASOCVE S T TN E bR oA G B T ST ], DT B s O A A A AR 1

Table 3. Ablation experiment results

3. HEMEBER

Model MSE MAE MAPE% R?
LSTM without Constructed Features 1134.47 27.85 10.17 0.3017
LSTM 705.65 20.34 7.75 0.5656
LSTM-Attention 624.13 19.90 7.36 0.6158

3.5. {EBFM LS4
A PFAL A EE LSTM-Attention B (PEREDL S, AT TE Ik $ 1 I RA RERIMERIS LT 1) 2%
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TRIE % 2] 18 ResNet-LSTM-Attention, FHTU01FRE A1 JL TG RC T 2) agit 5IRE 5 )R A A
ARIMA-LSTM, H X LEA [R] AR SR R0 o B o6 BRI 1595k FH AH [] PR AR I L S A S0 R
TR GE R A YRR Lo PE . TN EE R an &l 2 B, Imi@ e a it 507 (&l 3 FioR), PERegs Rk
4 B

XL EES 45 R 7R, ResNet-LSTM-Attention 84 [f) MSE _EF & 772.03, HK 23.7%. HVERE TR
FRA SR AE T 0 55 2% B 5 B i AR R R IC IE . ResNet FRITAR 2 X 45 435 1) 70 AR YT 7 B0 P 365 00 7 i T A 5%
HEINTEZSH, EHERMINGENE TR KASIEIS, BHMO LR A G kM fe i 25 M
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Figure 2. Single-step prediction results

B 2. BLTUMER
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Figure 3. Traditional empirical calculation method
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Table 4. Single-step prediction: comparative experimental results of different models

F4a. BLTUN: RERBESTLLIRIELER

Model MSE MAE MAPE% R?
LSTM-Attention 624.13 19.90 7.36 0.6158
ResNet-LSTM-Attention 772.03 20.21 7.75 0.5248
ARIMA-LSTM 952.04 52.63 20.23 0.2348

PRI 72 A0 BE /1. ARIMA-LSTM JRG A R I A %, MSE =ik 952.04, AHEL LSTM-Attention A5
H1 52.5%. HAERES IR T PR B R A . ARIMA BT 240 | B, &M TP
(6] 3 2 B A, T LSTM LK TR Rt P X B A =X — B 0 R R GiH, ARIMA 4k
PR S S bR A P2 I R R AR MR PEAFAE AR AR VR 5%, R EUR S TERE 5 . X B SRR 25 R R ],
% LSTM-Attention B8 7E BTG PR FE bR LI IR AL PERE , B0k 1AL 55 % 58 5 4 55 DL 0 52 ) J S247k
DA K 45— R A5 2 CAE IR 8] 77 51 T w0 fIe ek

3.6. HREZLEENAIK

NI UE TR A PO AR AL F o 1, AR BT TESHLE . BT B AL RE A0S . B B 4R
I 62#. 63#HLE I “Hlifi (L) S FEAS UL K 60#HL & O F A SRR SRR, SR 5 U 2R 8 A 7] (Y
AEBRAARE, R OR R AL B — Bk . S5 R 5 B

Table 5. Model generalization performance results

5. RELZHRENER

Testing Scenario MSE MAE MAPE% R?
60#-Diamond 624.13 19.90 7.36 0.6158

60#-Hongjinlong 911.67 39.32 2543 0.2730
62#-Diamond 823.24 35.03 21.57 0.3339
63#-Diamond 892.69 36.73 20.59 0.3743

BRAIALE 62#. 63#HL & L IVE BETE IS e 1 V6 A RO A Jo 22 S5 o LA AR (o . A 3R 8 AR A L 7
B, AFENLE BINUBORS BE . AR5l RGURHE . I HI BIASBEF M 22 7 R80T MR T 22610 R 7 S R
RGVEwEE . ERERRBEE TR SRR Z R . A B R T s, SREE i)
TR DEMRALIEAT . UEASSE) M EBRE AR, BB (B AW N E R AR RS XA B RS 1A
LA R A VI SR Bt b xfE LA SE A B e, S B U B Ve iz AR RE T R o MABSCHE 0 A BE )
B, ANFENLE KB D AR R WM ILR . RIER ARFIE ISR EAR L, (BRI S H AR AR A
WA ok RAE ARG EAFAEZESE,  IXAHRIE ML 1] A VR P 7 ST R AR oMb 7 Y T W £ 3 3 B o

60#HLETE “ Ll u(BORE i) S ERITEREE AR R 1 ORI 22 50 AR 7 i R R Z 5 . AN [
RSB 2005 . SR HREEEYHSHAAEREER, REEFET RN ZTRE
SN . BRI S, “4Le e S I m & AR R E S IR B RGP, SR s AT AL
Ay HBURA T % LR BRI A T AR, a5 RO RO S T 1 B v R . IR e BRI AR
WA T B B AW AL, TR I Zad RE b E 222 2] 7 “Bi A (R4 S A e, JELodE
BB RIMER L A A . IR R G LT, ARG AP EERZARERSET S8, ZTESH
TAHE 2 U RGN I B BORE I, S BURAT IS - o B O SRR BRI A RE ) SEIRAS T
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BT L3Rz A RE 7 FE U IR, AT A SRR SR TR IR A T S SRS — i T A RN R 5 T 7
R G ARBTG5 RUIGRHEDHRS i\ LSTM 4%, RIS B 352
AFPLE IR RS, s AL . HUBOR FZ O 22 55 XE DL B B AL R R R R R TIE
Moo ST B A& N T %, R PO SR - ol 7 S, e L E0E 7S R AL & ISR LRt A, b
JRAE B FRHLE D BREAR LR S8, KOS eI =Rk B G L 1 A X 55 53, Il X
PSR 25 ] BIGUS AR R IE R IR, BEAREE 20 A0 22 57 00 B A RE it o B3k SRS P AR 4 S B 2 T 37
SR A M, RS S IR 5 St R B T 1)

3.7. ZHHM

D9 A B R I RTIE PR R T OR AW TR 34 VA T SR AT 22 2D 10, BURE AT — 25 (0 1
TEERN T — PR NRHIE . 220 T RE 54 S AR I 18] B 1 i A = RS gl v A=t 490t
R e SR EE S . BT 2B W SLIn S RCE 6), ZDTIMVERERE P KIGINE RS ETE M, T2
TIRACEREF AR 2Z BAHOR . B IRAE KRR A AL LU I 5 T 50 B ot 100 A i A 240
SR 15 LTI MAPE 3828 9.51%, 5 TN IRER 8.95% I SEATKERE, W] e AL i FE 3R (1A 2=
%o RSiROVEBEWE TN RO 5. AESRERRHI R, AT S D BN AR DAl EE S A R PR
M HE RS AL, R iz PR S R TN a2 2%, T B H DAL R .

Table 6. Multi-step prediction results
= 6. ZELTUMER

Prediction Steps MSE MAE MAPE% R?
5 897.42 23.53 8.95 0.4620
10 958.76 24.93 9.36 0.4209
15 991.93 25.25 9.51 0.3907
4. Ghig

1) A SR R Tl RE B R 5 M fafivt « B T35, BEUSAT M A MES R LRI ZHLE
2R D AR, DR RGBT B A SRR PR I B SR . AR AL R T, AR A TN A R
PLE A7 B S B M 7 BRI X B 52 U 2B SR AR I T RbA it o 8 (I B B
Dy, AR PR AT R N RE AT B T RO AR AR IR R A SR, JE S DR AR R AN T BN F HLIA
Ao A E AR, AW FONERE A SO HERE . INPVE R ) i R O T RS . AR
HA R TR E TR B, 90E 1 IR 22 2 J5iEAE R IR RGBT B AT 71, e 8™
BREACBUE BUE T IR S 2 00 . A BIAEREHLE . BEIR SR T A — R A AL RETE IRk,
EAE D FIAE 55 h R DU L BE, DAL AE R0 22 20 WU o i SE RS B2, JE 2MIE M 1 20T iR AE S P
APPSR P A R AT FEE, SRS, AT CNERR RIS TR RN« IERE A 2 AN A i N
CCEESRS , O R BRI AL RE ST HR W T T 1

2) Y€ RBRH M TIPS BE R0 KA AR S M (R AR, HEDRR B 1, R WIBRARE J o . 8
1M, AW R R AN 0.6, RUIFTEMRAIBEMIREL) 60% 10 H b2 A8 5. AT
SR EM SH R PTARAE, I8 RGRHMIE TR VRN &, ([E5E %) 40%H)78 7
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