苹果梨复合果汁工艺优化及其品质测定

王蕙颖*,陈润梓*,杜佩霓,杨 兵,田桂芳,汤轶伟,淑 英#,张志胜#

河北农业大学食品科技学院,河北 保定

收稿日期: 2025年10月6日; 录用日期: 2025年10月31日; 发布日期: 2025年11月13日

摘要

以雪青梨、浓缩苹果汁为原料,以罗汉果甜苷、柠檬酸、羧甲基纤维素钠、黄原胶等为辅料,开发苹果梨复合饮料,通过单因素实验和正交实验优化复合饮料的制备工艺。结果表明,复合饮料最佳制备条件为: 雪青梨汁与苹果汁比例为5:5 (V/V),罗汉果甜苷添加量0.006%,柠檬酸添加量0.01%,0.15%稳定剂(羧甲基纤维素钠:黄原胶 = 1:2),在此条件制得的复合果汁色泽均匀明亮,兼具苹果与梨的果香,酸甜适中,口感柔顺;测得该复合饮料还原糖(以葡萄糖计)含量为9.87 mg/mL,总酸(以柠檬酸计)48 g/kg,pH值4.0,可溶性固形物12°Brix。苹果梨复合饮料的研制丰富了复合饮料的种类,也为新型健康复合果汁的开发提供理论依据与技术支撑。

关键词

苹果浓缩汁, 雪青梨, 低糖, 复合果汁, 工艺优化

Process Optimization and Quality Analysis of Apple-Pear Mixed Juice

Huiying Wang*, Runzi Chen*, Peini Du, Bing Yang, Guifang Tian, Yiwei Tang, Ying Shu#, Zhisheng Zhang#

College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei

Received: October 6, 2025; accepted: October 31, 2025; published: November 13, 2025

Abstract

Using Xueqing pear and concentrated apple juice as raw materials, and monk fruit glycoside, citric acid, sodium carboxymethylcellulose (CMC-Na), and xanthan gum as auxiliary ingredients, an apple-

文章引用: 王蕙颖, 陈润梓, 杜佩霓, 杨兵, 田桂芳, 汤轶伟, 淑英, 张志胜. 苹果梨复合果汁工艺优化及其品质测定[J]. 食品与营养科学, 2025, 14(6): 812-821. DOI: 10.12677/hjfns.2025.146089

^{*}共同一作。

[#]通讯作者。

pear compound beverage was developed. The preparation process was optimized through single-factor experiments and orthogonal experiments. The results showed that the optimal preparation conditions were as follows: the volume ratio of Xueqing pear juice to apple juice was 5.5 (V/V), the addition of monk fruit glycoside was 0.006%, the addition of citric acid was 0.01%, and the stabilizer (CMC-Na:xanthan gum = 1:2) was added at 0.15%. Under these conditions, the prepared mixed juice exhibited a uniform and bright color, combined with the fruity aromas of apple and pear, had a balanced sweet-sour taste, and a smooth mouthfeel. The determined reducing sugar content (as glucose) was 9.87 mg/mL, total acid content (as citric acid) was 48 g/kg, pH value was 4.0, and soluble solids content was 12° Brix. The development of this apple-pear compound beverage enriches the variety of compound beverages and provides theoretical and technical support for the development of new healthy compound fruit juices.

Keywords

Apple Concentrated Juice, Xueqing Pear, Low-Sugar, Mixed Juice, Process Optimization

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

随着消费者健康意识的持续增强,人们的饮食结构正逐步由传统的高糖、高脂摄入模式转向天然、低加工食品。在此背景下,消费者对于饮料的需求也从基础解渴与口感享受,逐步拓展至营养、健康、口感多样的新型产品[1]。无糖及低糖饮料因其符合现代健康理念,受到越来越多消费者的青睐,尤其在体重管理、营养调控及慢性病预防等方面具有广阔的市场前景[2]。植物复合型果汁通过多种水果的营养互补和风味融合,不仅能够规避传统高糖饮料的健康风险,又能够满足消费者对营养、健康饮品的需求,已成为饮料领域的重要发展方向[3]。

苹果中含有多酚、三萜、果胶、膳食纤维等生物活性物质,有助于保护人体细胞免受氧化损伤[4]。 因其营养丰富且甜度较高,通常将其与各类水果进行复配制成复合果汁,以丰富产品的营养价值和风味。 梨果富含维生素、矿物质、蛋白质和膳食纤维等多种营养成分,因而梨果具有清热降火、清心润肺、化 痰止咳等保健功效[5]。将苹果浓缩汁和梨汁进行复配来开发复合果汁,结合苹果和梨的天然颜色,在性 能和价值上互相补充,保留了苹果和梨的营养价值,又同时兼具风味与健康,顺应饮料产品绿色、健康 的发展趋势。

本研究以河北蠡县的雪青梨、苹果浓缩汁为主要原料,引入罗汉果甜苷作为天然代糖[6],配以柠檬酸、黄原胶等配料,通过单因素实验与正交设计优化配方参数,强化产品低糖特性与功能价值,将其开发研制成新型健康复合果汁,为新型健康复合果汁的开发提供理论依据与技术支撑,顺应"健康中国"战略下的产业发展需求。

2. 材料与方法

2.1. 材料与仪器

雪青梨,河北百丰农产品开发有限公司;苹果浓缩汁,可罗食品有限公司;食品级罗汉果甜苷,河 北旺优生物科技有限公司;食品级羧甲基纤维素钠,重庆力宏精细化工有限公司;食品级黄原胶,山东 阜丰发酵有限公司:食品级柠檬酸,山东英轩实业股份有限公司。

分析天平(USAHZ), 美国 HUAZHI 公司;榨汁机(TJ06A-400),浙江苏泊尔股份有限公司;pH 计(STARTER3100),上海奥豪斯仪器有限公司;手持糖度计(PAL-1)日本爱拓公司;电子鼻(c-Nose),上海保圣实业发展有限公司;恒温水浴锅(HH-2J),金坛市杰瑞尔电器有限公司。

2.2. 实验方法

工艺流程如下:

2.2.1. 操作要点

① 挑选与清洗: 挑选新鲜、无虫害、无腐烂的具有良好成熟度的雪青梨果,清洗去除表面杂质后沥干备用; ② 去核与护色: 去除果核,切成 1~2 cm 小块,立即采用 0.04%柠檬酸溶液浸泡进行护色[7],以防止原料变色; ③ 过滤与离心: 雪青梨放入榨汁机榨汁,用四层纱布过滤,得到较澄清的雪梨汁,冷藏备用,离心后取上清液即为梨清汁; ④ 苹果汁制备: 将苹果浓缩汁以 1:9 的比例稀释获得苹果汁; ⑤ 调配: 将制备好的梨汁、苹果汁、柠檬酸、罗汉果甜苷及稳定剂(黄原胶、羧甲基纤维素钠)按照不同比例混合调配[8]; ⑥ 均质: 4000 r/min 均质 5 min,使果汁完全混合; ⑦ 灌装: 将调配好的果汁饮料装入洁净玻璃瓶内封盖。

2.2.2. 苹果梨复合果汁配方的单因素实验

1) 确定雪青梨汁与苹果汁复配质量比

固定添加 0.015% 柠檬酸、0.006% 罗汉果甜苷、0.15% (稳定剂羧甲基纤维素钠:黄原胶 =1:1),改变雪青梨汁与苹果汁的复配质量比即 1:9、3:7、5:5、7:3、9:1,复配后根据表 2 的感官评价标准进行感官评价。

2) 确定柠檬酸的添加量

固定雪青梨汁与苹果汁复配质量比为 1:1,添加 0.006%罗汉果甜苷、0.15%(稳定剂羧甲基纤维素钠:黄原胶 = 1:1),改变柠檬酸的添加量即 0.005%、0.01%、0.015%、0.02%、0.025%,复配后根据表 2 的感官评价标准进行感官评价。

3) 罗汉果甜苷的添加量

固定雪青梨汁与苹果汁复配比例为 1:1,添加 0.015% 柠檬酸、0.15% (稳定剂羧甲基纤维素钠:黄原胶 = 1:1),改变罗汉果甜苷的添加量即 0%、0.003%、0.006%、0.009%、0.012%,复配后根据表 2 的感官评价标准进行感官评价。

4) 稳定剂的比例

固定雪青梨汁与苹果汁复配比例为 1:1,添加 0.015%柠檬酸、0.006%罗汉果甜苷,改变稳定剂的比例即 0.15%(稳定剂羧甲基纤维素钠:黄原胶 =2:1)、0.15%(稳定剂羧甲基纤维素钠:黄原胶 =1:1)、0.15%(稳定剂羧甲基纤维素钠:黄原胶 =1:2),复配后根据表 2的感官评价标准进行感官评价。

2.2.3. 苹果梨复合果汁配方的正交实验

以梨汁:苹果汁的复配质量比(A)、柠檬酸添加量(B)、罗汉果甜苷添加量(C)、稳定剂的比例(D)为自变量,以感官评分作为评价指标,采用 $L_9(3^4)$ 正交表进行正交实验,因素水平设计见表 1。

Table 1. Design of factors and levels for orthogonal experiment 表 1. 标准试验系统结果数据

水平	因素				
		B 柠檬酸添加量/%	C 罗汉果甜苷添加量/%	D 稳定剂添加量/(V/V)	
1	5:5	0.005	0.006	2:1	
2	7:3	0.010	0.009	1:1	
3	9:1	0.015	0.012	1:2	

2.2.4. 感官评价

参考刘茂[9]的方法并稍作修改。由 15 名经过训练的食品科学与工程专业学生(7 名男生,8 名女生,年龄 20~25 周岁)组成感官评价小组,对不同工艺条件处理后的苹果梨复合果汁进行感官评定,将 20 mL 复合果汁倒入 50 mL 品尝杯中,随机编码后由感官评价人员对复合果汁的口感、香气、色泽、组织状态4 种不同的属性进行评定并打分,结果采用百分制,根据每个评定人员的感官评分结果计算平均值,结果保留 1 位小数。苹果梨复合果汁感官评定标准见表 2。

Table 2. Sensory scoring form 表 2. 感官评分表

指标	评价标准	得分/分
	酸甜适中,柔软爽口,无异味	25~30
口感(30分)	酸甜较适中,较细腻柔和,无异味	20~25
	酸甜不适,口感粗糙,无异味	10~20
	兼具苹果与梨果香,气味协调浓郁	20~25
香气(25分)	苹果与梨果味较明显,气味适中	15~20
	无梨和苹果清香,有异味	1~10
	亮黄色,颜色均匀一致	15~20
色泽(20分)	淡黄色,颜色较均匀	10~15
	浅黄色,颜色暗淡不均	1~10
	均匀悬浮,无分层,流动性好	15~25
组织状态 (25 分)	较均匀悬浮,轻微分层,流动性较好	10~15
(/ / /	不均匀,明显分层,流动性差	1~10

2.2.5. pH 值的测定

pH 值参照 GB 5009.237-2016《食品安全国家标准食品 pH 值的测定》[10]测定。

2.2.6. 可溶性固形物的测定

可溶性固形物的测定参照 GB/T 12143-2008《饮料通用分析方法》中的折光计法测定[11],采用手持 折光仪测定。测定前先按说明书校正折光计,之后用玻璃棒蘸取 2~3 滴复合果汁,滴于折光计棱镜面中 央。迅速闭合棱镜,使样品均匀无气泡,并充满视野。对准光源,读取目镜视野中的百分数,即为复合果 汁的可溶性固形物的百分含量[12]。

2.2.7. 总酸度的测定

总酸测定参照 GB 12456-2021《食品安全国家标准食品中总酸的测定》中的第一法酸碱指示剂滴定法进行测定[13]。

2.2.8. 电子鼻测定

参考张任虎[14]的方法并稍作修改,精确称取 5 mL 样品,移入顶空瓶中进行测定。每个样品平行测定 3 次,样品检测参数如下:气体流速为 1.0 L/min,清洗流量为 6.0 L/min,清洗时长为 120 s,进样时长为 60 s,进样气体体积为 10 mL。电子鼻气敏传感器名称及气敏传感器性能见表 3。

Table 3. Performance of gas sensors of electronic nose 表 3. 电子鼻气敏传感器性能

传感器类型	传感器特性	传感器	传感器特性
S1	丙烷、烟雾等	S10	氢气,含氢气体等
S2	丙烷、烟雾等	S11	烷烃,一氧化碳等
S3	氢气	S12	液化气,甲烷类
S4	硫化物	S13	短链烷烃类
S5	含氨类物质	S14	甲烷,燃气、烟雾等
S6	醛酮类	S15	含碳类物质、醇类、醛类等
S7	短链烷烃类、可燃性气体等	S16	硫化氢
S8	液化气	S17	氨气、胺类等
S9	烷烃,醇类、酮类等	S18	甲苯、丙酮,乙醇等

2.3. 数据处理

实验结果以平均值 \pm 标准差表示,使用 SPSS 23.0 软件对数据进行方差分析,并使用 Duncan 法进行事后检验,p < 0.05 表示差异显著。使用 Origin 2021 绘图。

3. 结果与讨论

3.1. 苹果梨复合果汁配方

3.1.1. 确定雪青梨汁与苹果汁的复配质量比

雪青梨汁与苹果汁的复配质量比对复合果汁的影响见图 1。随着雪青梨汁添加量的上升,苹果梨复合果汁感官评分呈现出先升高后下降的趋势。当雪青梨汁与苹果汁的质量比为 7:3 时,复合果汁的感官评分最高,此时复合果汁呈亮黄色,酸甜适中,具有苹果与梨果香气。当雪青梨汁的占比超过 70%时,感官评分下降,其原因可能是苹果汁中高苹果酸含量导致低 pH 值。当雪青梨汁添加量过少时,苹果汁风味过于浓郁,糖酸比失衡,影响口感;而当雪青梨汁添加量较多时,可以更好地控制酸糖比在适宜的范围内,缓冲苹果酸的尖锐感,提高圆润度,从而影响感官评分。但在梨汁占比 90%时,苹果汁占比小,风味淡,一定程度上也会失衡。可以一定程度上说明,两种水果中,雪青梨汁对风味起到更大的作用。因此,将雪青梨汁与苹果汁的复配质量比确定为 7:3。

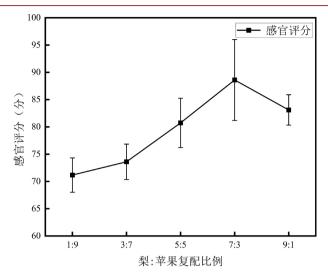


Figure 1. Effect of compounding ratio on the quality of compound fruit juice

图 1. 复配比例对复合果汁品质的影响

3.1.2. 确定柠檬酸的添加量

柠檬酸的添加量对复合果汁的影响见图 2,随柠檬酸含量的增加,感官评分呈先缓慢上升再下降的变化趋势。当柠檬酸含量为 0.01%时,感官评分最高,此时复合果汁呈亮黄色,酸甜适中,兼具苹果和梨果的香气,比其他实验组的气味更加协调浓郁,柠檬酸含量为 0.025%时,感官评分最低。原因可能是梨汁和苹果汁本身含有丰富的苹果酸和柠檬酸,柠檬酸添加量过多会严重掩盖苹果汁和雪青梨汁本身的香气,造成酸甜失衡。因此,将柠檬酸的添加量确定为 0.01%。

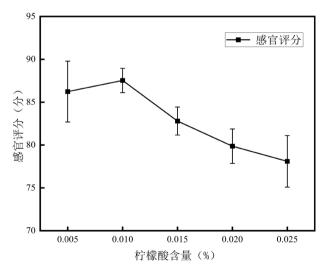


Figure 2. Effect of citric acid addition amount on the quality of compound fruit juice

图 2. 柠檬酸添加量对复合果汁品质的影响

3.1.3. 确定罗汉果甜苷的添加量

罗汉果甜苷的添加量对复合果汁的影响见图 3,随着罗汉果甜苷添加量的增加,感官评分呈现出先上升再下降的趋势。当罗汉果甜苷添加量为 0.009%时,感官评分最高,此时复合果汁呈亮黄色,酸甜适中,

兼具苹果和梨果的香气,罗汉果甜苷添加量为 0.012%时,感官评分最低。其原因可能是当罗汉果甜苷添加量过多时,果汁本身的酸味被掩盖,加之梨汁中还有丰富的果糖和山梨醇,三者共同作用使得甜味过浓而影响口感和风味。因此,将罗汉果甜苷的添加量确定为 0.009%。

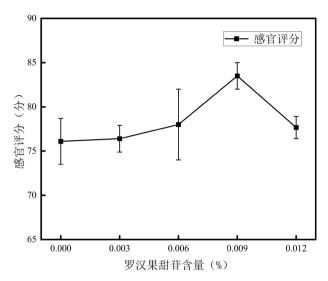


Figure 3. Effect of Mogroside addition amount on the quality of compound fruit juice

图 3. 罗汉果甜苷添加量对复合果汁品质的影响

3.1.4. 确定稳定剂的比例

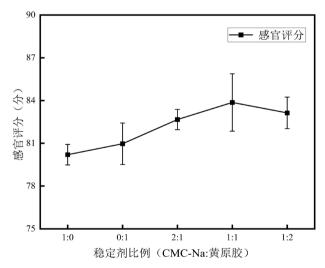


Figure 4. Effect of stabilizer addition amount on the quality of compound fruit juice

图 4. 稳定剂添加量对复合果汁品质的影响图

稳定剂的比例对复合果汁的影响见图 4。随着复合稳定剂(羧甲基纤维素钠:黄原胶)比例的变化,感官评分呈现出先上升再下降的趋势,当两者添加比例为 1:1 时,感官评分最高,此时复合果汁均匀悬浮、无分层且流动性好,呈亮黄色,酸甜适中,苹果和梨果的香气协调浓郁。当单独添加羧甲基纤维素钠时,感官评分最低[15]。原因可能是黄原胶和羧甲基纤维素钠共同作用时,能形成更稳定的网络结构,提供更

佳的增稠效果,使果汁口感更顺滑,能更好地防止果汁分层和沉淀,提升稳定性。因此,将稳定剂的比例确定为1:1。

3.2. 苹果梨复合果汁配方的正交实验结果与分析

根据单因素实验结果,对复合果汁的配方进行正交实验优化,实验结果见表 4。评价复合果汁的重要指标是感官评价,感官评价直接影响着苹果梨复合果汁被接受的程度。由表 4 可知,四个因素对复合果汁品质的影响由强到弱的顺序是 A (雪青梨汁与苹果汁的复配质量比) > C (罗汉果甜苷的添加量) > D (稳定剂的比例) > B (柠檬酸的添加量),其中雪青梨汁与苹果汁的复配质量比的影响最大,其次是罗汉果甜苷添加量、柠檬酸添加量、稳定剂添加量。苹果梨复合果汁最佳配方组合为:A1B2C1D3,即雪青梨汁:苹果汁(v/v)=5:5、罗汉果甜苷 0.006%、柠檬酸 0.01%,0.15%稳定剂(羧甲基纤维素钠:黄原胶 =1:2)。验证性实验结果显示在该条件下复合饮料的色泽,风味,口感最佳,感官评价分达到 98。

Table 4. Orthogonal experiment design and results 表 4. 正交实验设计与结果

实验号	A	В	С	D	感官评分
1	1	1	1	1	92.50
2	1	2	2	2	90.00
3	1	3	3	3	90.50
4	2	1	2	3	83.50
5	2	2	3	1	82.00
6	2	3	1	2	85.00
7	3	1	3	2	83.50
8	3	2	1	3	96.00
9	3	3	2	1	90.00
K_1	273.00	259.50	273.50	264.50	
K_2	250.50	268.00	263.50	258.50	
K_3	269.50	265.50	256.00	270.00	
$\overline{\mathbf{k}}_{1}$	91.00	86.50	91.17	88.17	
$\overline{\mathbf{k}}_{2}$	83.50	89.33	87.83	86.17	
$\overline{\mathbf{k}}_3$	89.83	88.50	85.33	90.00	
R	7.50	2.83	5.83	3.83	

3.3. 复合果汁理化指标及电子鼻测定结果

对最优工艺所获得复合果汁的综合评价表明,成品果汁还原糖(以葡萄糖计)含量为 9.87 mg/mL,总 酸(以柠檬酸计) 48 g/kg, pH 值 4.0,可溶性固形物 12°Brix。按最优配方调配的苹果梨复合果汁,从感官、口感、色泽维度开展分析[16],成品香气浓郁,具备典型苹果与梨香气特征,口感柔顺、回味悠长,符合低糖饮料要求[17]。

借助电子鼻技术对工艺优化后的复合果汁进行品质评价,该技术可精准捕获样品挥发性有机化合物信息,经传感器阵列响应及数据解析,客观反映风味物质特征。图 5 为最优成品电子鼻雷达图。其中,

s9、s15 传感器对醇类、酯类物质响应稳定,能产生水果及特殊香气[18],是因为稳定的加工工艺使醇类、酯类物质生成、留存一致。三次重复测量数据离散度低,可靠性优; s11、s12、s13 传感器响应峰值显著,反映烷烃类物质在体系中可被有效识别[19],是因为梨果实含烷烃前体物质[20],加工后释放。整体数据验证,最优配方在风味协调性与稳定性上表现优异,契合高品质复合饮料感官与理化指标,风味品质达优。

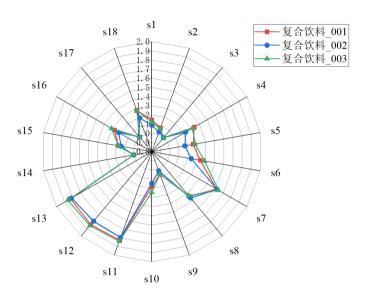


Figure 5. Radar chart of electronic nose for the optimal combination 图 5. 最优组合电子鼻雷达图

4. 结论

本实验通过单因素及正交实验,优化了苹果梨复合果汁的关键工艺参数。结果表明苹果梨复合果汁最优配方为: 雪青梨汁:苹果汁(v/v)=5:5、罗汉果甜苷 0.006%、柠檬酸 0.01%, 0.15%稳定剂(采用羧甲基纤维素钠:黄原胶 =1:2)。在此条件下制得的复合饮料感官评分最高,成品具有苹果和梨特有香气,酸甜适中,入口细腻爽滑,品质稳定,老少皆宜,理化指标符合低糖要求。本研究为开发高品质低糖复合果汁提供了可行的工艺方案,为新型健康复合果汁的开发提供理论依据与技术支撑。

基金项目

河北省高等教育教学改革研究与实践项目(2023GJJG115, 2023GJJG095);保定市科技项目计划(2311N002);河北农业大学一流课程建设项目(2023~2025);河北农业大学思政优质课程建设项目(2023~2025);河北农业大学第十二批教改项目(202359)。

参考文献

- [1] 钟佳倩, 余江月, 汪正园, 等. 超加工食品消费及与健康关联的研究进展[J]. 环境与职业医学, 2024, 41(11): 1309-1318, 1324.
- [2] Shrapnel, W.S. and Butcher, B.E. (2021) Correction: Shrapnel, W.S.; Butcher, B.E. Sales of Sugar-Sweetened Beverages in Australia: A Trend Analysis from 1997 to 2018. Nutrients 2020, 12, 1016. Nutrients, 13, Article 1356. https://doi.org/10.3390/nu13041356
- [3] Xie, A., Dong, Y., Liu, Z., Li, Z., Shao, J., Li, M., et al. (2023) A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods, 12, Article 3952. https://doi.org/10.3390/foods12213952

- [4] Wojdyło, A. and Oszmiański, J. (2020) Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. *Antioxidants*, **9**, Article 567. https://doi.org/10.3390/antiox9070567
- [5] Du, K., Yuan, F., Huo, M., Mao, N., Zhao, S., Yang, X., et al. (2025) Nutrients, Bioactives, Health-Promoting Effects, and Related Products of Pears: Different Varieties, Growth Stages and Parts. *Journal of Functional Foods*, **129**, Article 106844. https://doi.org/10.1016/j.jff.2025.106844
- [6] Donald, C.E., Stokes, P., O'Connor, G. and Woolford, A.J. (2005) A Comparison of Enzymatic Digestion for the Quantitation of an Oligonucleotide by Liquid Chromatography-Isotope Dilution Mass Spectrometry. *Journal of Chromatography B*, **817**, 173-182. https://doi.org/10.1016/j.jchromb.2004.11.058
- [7] 李靓, 张顺阁, 张轩珂. 柚子火龙果复合饮料的工艺研究[J]. 饮料工业, 2025, 28(2): 53-59.
- [8] 吕培楷, 刘晓媛, 张阳阳. 金桔百香果复合饮料的研制[J]. 粮食加工, 2024, 49(5): 23-27.
- [9] 刘茂, 付晓婷, 王雷, 等. 发酵型海带-苹果复合果汁饮料的研制及发酵体系抗氧化活性的研究[J]. 食品工业科技, 2022, 43(4): 214-220.
- [10] 国家卫生和计划生育委员会. 食品安全国家标准食品 pH 值的测定: GB 5009.237-2016 [S]. 北京: 中国标准出版 社, 2016.
- [11] 国家质量监督检验检疫总局. 饮料通用分析方法: GB/T 12143-2008 [S]. 北京: 中国标准出版社, 2008.
- [12] 中华人民共和国国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准食品中总酸的测定:GB 12456-2021 [S]. 北京:中国标准出版社,2021.
- [13] 张任虎, 陈志伟, 吴茜, 等. 不同香型白酒对白腐乳品质的影响[J]. 中国酿造, 2022, 41(11): 96-101.
- [14] Tavares, P.P.L.G., dos Anjos, E.A., Nascimento, R.Q., da Silva Cruz, L.F., Lemos, P.V.F., Druzian, J.I., et al. (2021) Chemical, Microbiological and Sensory Viability of Low-Calorie, Dairy-Free Kefir Beverages from Tropical Mixed Fruit Juices. CyTA-Journal of Food, 19, 457-464. https://doi.org/10.1080/19476337.2021.1906753
- [15] 穆申玲, 沈文锋, 吕大伍, 等. 电子鼻技术及其应用研究进展[J]. 材料导报, 2024, 38(14): 52-65.
- [16] 徐桂敏. 低糖/无糖健康产业分析[J]. 饮料工业, 2018, 21(3): 73-75.
- [17] 朱静, 陈顺心, 张一鸣, 等. 不同酵母对圣女果果酒品质及挥发性风味物质的影响[J]. 中国酿造, 2024, 43(9): 177-184.
- [18] 范霞,杨恒明,陈荣顺.基于顶空固相微萃取-气相色谱-质谱联用法、电子鼻和电子舌技术分析绿茶饮料的风味物质[J].南京农业大学学报,2023,46(5):960-974.
- [19] 焦慧君, 董冉, 董肖昌, 等. 山东地方梨种质资源果实性状综合评价[J]. 果树学报, 2024, 41(2): 201-215.
- [20] 吴江娜,魏冠棉,毛娜,等.不同乳酸菌发酵对雪花梨汁营养成分、抗氧化活性及挥发性风味物质的影响[J].中国食品学报,2024,24(9):310-321.